Процесс синтеза глюкозы. Организм умеет синтезировать глюкозу. Обход десятой реакции гликолиза

В клетках организма всегда существует потребность в глюкозе:

  • для эритроцитов глюкоза является единственным источником энергии,
  • нервная ткань потребляет около 120 г глюкозы в сутки и эта величина практически не зависит от интенсивности ее работы. Только в экстремальных ситуациях (длительное голодание) она способна получать энергию из неуглеводных источников (кетоновые тела),
  • глюкоза играет весомую роль для поддержания необходимых концентраций метаболитов цикла трикарбоновых кислот (в первую очередь оксалоацетата ).

Таким образом, при определенных ситуациях – при низком содержании углеводов в пище, голодании, длительной физической работе, т.е. когда глюкоза крови расходуется и наступает гипогликемия , организм должен иметь возможность синтезировать глюкозу и нормализовать ее концентрацию в крови. Это достигается реакциями глюконеогенеза .

По определению, глюконеогенез – это синтез глюкозы из неуглеводных компонентов: лактата, пирувата, глицерола, кетокислот цикла Кребса и других кетокислот, из аминокислот.

Необходимость глюконеогенеза и его значение для организма демонстрируют два цикла – глюкозо-лактатный и глюкозо-аланиновый .

Глюкозо-лактатный цикл (цикл Кори)

Глюкозо-лактатный цикл – это циклический процесс, объединяющий реакции глюконеогенеза и реакции анаэробного гликолиза. Глюконеогенез происходит в печени, субстратом для синтеза глюкозы является лактат, поступающий в основном из эритроцитов или мышечной ткани .

В эритроцитах молочная кислота образуется непрерывно, так как для них анаэробный гликолиз является единственным способом образования энергии.

В скелетных мышцах высокое накопление молочной кислоты (лактата) является следствием гликолиза при очень интенсивной, субмаксимальной мощности, работе, при этом внутриклеточный рН снижается до 6,3-6,5. Но даже при работе низкой и средней интенсивности в скелетной мышце всегда образуется некоторое количество лактата.

Убрать молочную кислоту можно только одним способом – превратить ее в пировиноградную кислоту. Однако сама мышечная клетка ни при работе, ни во время отдыха не способна превратить лактат в пируват из-за особенностей изофермента лактатдегидрогеназы-5. Зато клеточная мембрана высоко проницаема для лактата и он движется по градиенту концентрации наружу. Поэтому во время и после нагрузки (при восстановлении) лактат легко удаляется из мышцы. Это происходит довольно быстро, всего через 0,5-1,5 часа в мышце лактата уже нет. Малая часть молочной кислоты выводится с мочой.

Большая часть лактата крови захватывается гепатоцитами, окисляется в пировиноградную кислоту и вступает на путь глюконеогенеза . Глюкоза, образованная в печени, используется самим гепатоцитом или возвращается обратно в мышцы, восстанавливая во время отдыха запасы гликогена. Также она может распределиться по другим органам.

Глюкозо-лактатный (выделен желтым) и глюкозо-аланиновый циклы

Глюкозо-аланиновый цикл

Целью глюкозо-аланинового цикла также является уборка пирувата, но кроме этого решается еще одна немаловажная задача – доставка аминного азота из мышцы в печень.

При мышечной работе и в покое в миоците распадаются белки и образуемые аминокислоты


Глюконеогенез – синтез глюкозы из неуглеводных продуктов. Такими продуктами или метаболитами являются в первую очередь молочная и пировиноградная кислоты, гликогенные аминокислоты, глицерол и ряд других соединений. Иными словами, предшественниками глюкозы в глюконеогенезе может быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов цикла трикарбоновых кислот.



У позвоночных наиболее интенсивно глюконеогенез протекает в клетках печени и почек (в корковом веществе). Большинство стадий глюконеогенеза представляет собой обращение реакции гликолиза. Только 3 реакции гликолиза (гексокиназная, фосфофруктокиназная и пируваткиназная) необратимы, поэтому в процесс глюконеогенеза на 3 этапах используются другие ферменты.


Синтез фосфоенолпирувата осуществляется в несколько этапов: 1) Превращение пирувата в оксалоацетат. Пируват карбоксилируется пируваткарбоксилазой при участии АТФ: Пируваткарбоксилаза, которая катализирует эту реакцию, является аллостерическим митохондриальным ферментом. В качестве аллостерического активатора данного фермента необходим ацетил-КоА.








Фосфоенолпируват, образовавшийся из пирувата, в результате ряда обратимых реакций гликолиза превращается во фруктозо- 1,6-бисфосфат. Далее следует фосфофруктокиназная реакция, которая необратима. Глюконеогенез идет в обход этой реакции. Превращение фруктозо-1,6-бис-фосфата во фруктозо-6-фосфат катализируется специфической фосфатазой:





Регуляция глюконеогенеза. Роль аллостерического активатора пируваткарбоксилазы выполняет ацетил-КоА. В отсутствие ацетил-КоА фермент почти полностью лишен активности. Когда в клетке накапливается митохондриальный ацетил-КоА, биосинтез глюкозы из пирувата усиливается. Известно, что ацетил- КоА одновременно является отрицательным модулятором пируватдегидрогеназного комплекса. Накопление ацетил-КоА замедляет окислительное декарбоксилирование пирувата, что также способствует активации глюконеогенеза.


Другой важный момент в регуляции глюконеогенеза – реакция, катализируемая фруктозо-1,6-бисфосфатазой – ферментом, который ингибируется АМФ. Противоположное действие АМФ оказывает на фосфофрукто киназу, т. е. для этого фермента он является аллостерическим активатором. При низкой концентрации АМФ и высоком уровне АТФ происходит стимуляция глюконеогенеза. Напротив, когда величина отношения АТФ/АМФ мала, в клетке наблюдается расщепление глюкозы. Глюконеогенез и гликолиз регулируются реципрокно, так что, если активность одного из путей относительно понижается, то активность другого пути повышается.




Фруктозо-2,6-бисфосфат это метаболит, образующийся из фруктозо-6-фосфата и выполняющий только регуляторные функции. Образование фруктозо-2,6-бисфосфата путем фосфорилирования фруктозо-6-фосфата катализирует бифункциональный фермент (БИФ), который катализирует также и обратную реакцию. В реакции фосфорилирования фруктозо-6-фосфата с использованием АТФ БИФ проявляет киназную активность, а при дефосфорилировании образованного фруктозо-2,6-бисфосфата фосфатазную. Это обстоятельство и определило название фермента бифункциональный.


Киназная активность БИФ проявляется, когда фермент находится в дефосфорилированной форме (БИФ-ОН). Дефосфорилированная форма БИФ характерна для периода, когда инсулин/глюкагоновый индекс высокий. В этот период количество фруктозо-2,6-бисфосфата увеличивается. При низком инсулин/глюкагоновом индексе, характерном для периода длительного голодания, происходит фосфорилирование БИФ, и он функционирует как фосфатаза. Результатом является снижение количества фруктозо-2,6- бисфосфата



Глюконеогенез может регулироваться и непрямым путем. Фермент гликолиза пируваткиназа существует в 2 формах – L и М. Форма L (от англ. liver – печень) преобладает в тканях, способных к глюконеогенезу. Эта форма ингибируется избытком АТФ и некоторыми аминокислотами, в частности аланином. М-форма (от англ. muscle – мышцы) такой регуляции не подвержена. В условиях достаточного обеспечения клетки энергией происходит ингибирование L-формы пируваткиназы. Как следствие ингибирования замедляется гликолиз и создаются условия, благоприятствующие глюконеогенезу.



Лактат, образовавшийся в интенсивно работающих мышцах или в клетках с преобладающим анаэробным способом катаболизма глюкозы, поступает в кровь, а затем в печень. В печени отношение NАDН/NАD+ ниже, чем в сокращающейся мышце, поэтому лактатдегидрогеназная реакция протекает в обратном направлении, т.е. в сторону образования пирувата из лактата. Далее пируват включается в глюконеогенез, а образовавшаяся глюкоза поступает в кровь и поглощается скелетными мышцами. Эта последовательность событий называется глюкозо-лактатным циклом, или циклом Кори




Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования" title="Пируват + НАД+ + HS-KoA –> Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования" class="link_thumb"> 22 Пируват + НАД+ + HS-KoA –> Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования ацетил-КоА подвергается дальнейшему окислению с образованием СО2 и Н2О. Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот (цикл Кребса). Этот процесс, так же как окислительное декарбоксилирование пирувата, происходит в митохондриях клеток Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования"> Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования ацетил-КоА подвергается дальнейшему окислению с образованием СО2 и Н2О. Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот (цикл Кребса). Этот процесс, так же как окислительное декарбоксилирование пирувата, происходит в митохондриях клеток"> Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования" title="Пируват + НАД+ + HS-KoA –> Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования"> title="Пируват + НАД+ + HS-KoA –> Ацетил-КоА + НАДН + Н+ + СO2 Окисление пирувата до ацетил-КоА происходит при участии мультиферментной системы, получившую название пируватдегидрогеназный комплекс Образовавшийся в процессе окислительного декарбоксилирования">


Е1 - пируватдегидрогеназа; Е2 - дигидролипоилацетилтрансфсраза; Е3 - дигидролипоилдегидрогеназа Коферменты: ТПФ, амид липоевой кислоты, коэнзим А, ФАД, НАД стадии процесса




Цикл Кребса – общий конечный путь окисления ацетильных групп (в виде ацетил-КоА), в которые превращается в процессе катаболизма большая часть органических молекул, играющих роль клеточного топлива: углеводов, жирных кислот и аминокислот. Цикл происходит в матриксе митохондрий и состоит из восьми последовательных реакций




В результате второй реакции образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис- аконитовой кислоты, которая, присоединяя молекулу воды, переходит в изолимонную кислоту (изоцитрат). Катализирует эти обратимые реакции гидратации–дегидратации фермент аконитатгидратаза (аконитаза).


Третья реакция лимитирует скорость цикла Кребса. Изолимонная кислота дегидрируется в присутствии НАД- зависимой изоцитратдегидрогеназы: НАД-зависимая изоцитратдегидрогеназа является аллостерическим ферментом, которому в качестве специфического активатора необходим АДФ. Кроме того, фермент для проявления своей активности нуждается в ионах Mg2+ или Мn2+


Во время четвертой реакции происходит окислительное декарбоксилирование α-кетоглутаровой кислоты с образованием высокоэнергетического соединения сукцинил-КоА. Механизм этой реакции сходен с таковым реакции окислительного декарбоксилирования пирувата до ацетил-КоА. α-Кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в реакции принимают участие 5 коферментов: ТПФ, амид липоевой кислоты, HS-KoA, ФАД и НАД+:


Пятая реакция катализируется ферментом сукцинил-КоА- синтетазой. В ходе этой реакции сукцинил-КоА при участии ГТФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ за счет высокоэргической тиоэфирной связи сукцинил-КоА: АТФ Субстратное фофорилирование


В результате шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком прочно (ковалентно) связан кофермент ФАД. В свою очередь сукцинатдегидрогеназа прочно связана с внутренней митохондриальной мембраной:


Седьмая реакция осуществляется под влиянием фермента фумаратгидратазы (фумаразы). Фумаровая кислота гидратируется, продуктом реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью: в ходе реакции образуется L-яблочная кислота:




Одна молекула НАДН (3 молекулы АТФ) образуется при окислительном декарбоксилировании пирувата в ацетил-КоА. При расщеплении одной молекулы глюкозы образуется 2 молекулы пирувата, а при окислении их до 2 молекул ацетил-КоА и последующих 2 оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление молекулы пирувата до СО2 и Н2О дает 15 молекул АТФ). К этому количеству надо добавить 2 молекулы АТФ, образующиеся при аэробном гликолизе, и 6 молекул АТФ, синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН, которые образуются при окислении 2 молекул глицеральдегид-3-фосфата в дегидрогеназной реакции гликолиза. Следовательно, при расщеплении в тканях одной молекулы глюкозы синтезируется 38 молекул АТФ. Несомненно, что в энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем анаэробный гликолиз.


Молекулы внемитохондриального НАДН не способны проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицеролфосфатного челночного механизма При этом в результате полного окисления одной молекулы глюкозы может образоваться 36 молекул АТФ С помощью данного челночного механизма лишь в скелетных мышцах и мозге осуществляется перенос восстановленных эквивалентов от цитозольного НАДН + Н+ в митохондрии.




В клетках печени, почек и сердца действует более сложная малат-аспартатная челночная система. Действие такого челночного механизма становится возможным благодаря присутствию малатдегидрогеназы и аспартатаминотрансферазы как в цитозоле, так и в митохондриях. Если функционирует малат-аспартатный механизм, то в результате полного окисления одной молекулы глюкозы может образоваться не 36, а 38 молекул АТФ






Открытие пути прямого окисления углеводов, или, как его называют, пентозофосфатного цикла, принадлежит О. Варбургу, Ф. Липману, Ф. Дикенсу и В.А. Энгельгарду У млекопитающих активность пентозофосфатного цикла относительно высока в печени, надпочечниках, эмбриональной ткани и молочной железе в период лактации. Значение этого пути в обмене веществ велико. Он поставляет восстановленный НАДФН, необходимый для биосинтеза жирных кислот, холестерина и т.д. За счет пентозофосфатного цикла примерно на 50% покрывается потребность организма в НАДФН Образовавшийся НАДФН используется в цитозоле на восстановительные синтезы и не участвует в окислительном фосфорилировании, протекающем в митохондриях. Пентозофосфатный цикл поставляет пентозофосфаты для синтеза нуклеиновых кислот и многих коферментов.


Пентозофосфатный цикл начинается с окисления глюкозо-6- фосфата и последующего окислительного декарбоксилирования продукта (в результате от гексозофосфата отщепляется первый атом углерода). Это первая, так называемая окислительная, стадия пентозофосфатного цикла.



Первая реакция – дегидрирование глюкозо-6-фосфата при участии фермента глюкозо-6-фосфатдегидрогеназы и кофермента НАДФ+. Образовавшийся в ходе реакции 6-фосфоглюконо-δ-лактон – соединение нестабильное и с большой скоростью гидролизуется либо спонтанно, либо с помощью фермента 6-фосфоглюконолактоназы с образованием 6-фосфоглюконовой кислоты (6-фосфоглюконат) и НАДФН:


Во второй – окислительной – реакции, катализируемой 6-фосфоглюконатдегидрогеназой (декарбоксилирующей), 6- фосфоглюконат дегидрируется и декарбоксилируется. В результате образуется фосфорилированная кетопентоза – D-рибулозо-5-фосфат и еще 1 молекула НАДФН:


Под действием соответствующей эпимеразы из рибулозо-5- фосфата может образоваться другая фосфопентоза – ксилулозо-5- фосфат. Кроме того, рибулозо-5-фосфат под влиянием особой изомеразы легко превращается в рибозо-5-фосфат. Между этими формами пентозофосфатов устанавливается состояние подвижного равновесия:


Неокислительный этап (стадия) пентозофосфатного цикла. Реакции этого этапа не связаны с использованием кислорода и протекают в анаэробных условиях. При этом образуются вещества, характерные для первой стадии гликолиза (фруктозо- 6-фосфат, фруктозо-1,6-бисфосфат, фосфотриозы), а другие – специфические для пентозофосфатного пути (седогептулозо-7- фосфат, пентозо-5-фосфаты, эритрозо-4-фосфат).


Основными реакциями неокислительной стадии пентозофосфатного цикла являются транскетолазная и трансальдолазная. Эти реакции катализируют превращение изомерных пентозо-5-фосфатов. Коферментом в транскетолазной реакции служит ТПФ, играющий роль промежуточного переносчика гликольальдегидной группы от ксилулозо-5-фосфата к рибозо-5-фосфату. В результате образуется семиуглеродный моносахарид седогептулозо-7-фосфат и глицеральдегид-3-фосфат:








Синдром Вернике-Косакова (нервно-псих. заболевание) связан со значительным снижением (в 10 раз) способности транскетолазы связывать кофермент ТПФ. Дефект гена глюкозо-6- фосфатдегидрогеназы в эритроцитах сопровождается гемолитической анемией. Причина – недостаток НАДФН и, как следствие, недостаток восстановленного глутатиона (GSH), что приводит к росту образования активных форм кислорода и гемолизу эритроцитов

Потребность в глюконеогенезе

  • для эритроцитов глюкоза является единственным источником энергии;
  • нервная ткань потребляет около 120 г глюкозы в сутки и эта величина практически не зависит от интенсивности ее работы. Только в экстремальных ситуациях (длительное голодание) она способна получать энергию из неуглеводных источников;
  • глюкоза играет весомую роль для поддержания необходимых концентраций метаболитов цикла трикарбоновых кислот (в первую очередь оксалоацетата).

Таким образом, при определенных ситуациях - при низком содержании углеводов в пище, голодании, длительной физической работе, то есть когда глюкоза крови расходуется и наступает гипогликемия, организм должен иметь возможность синтезировать глюкозу и нормализовать ее концентрацию в крови. Это достигается реакциями глюконеогенеза.

Необходимость глюконеогенеза в организме демонстрируют два цикла – глюкозо-лактатный и глюкозо-аланиновый.

Глюкозо-лактатный (выделен желтым) и глюкозо-аланиновый циклы


Глюкозо-лактатный цикл (цикл Кори)

Глюкозо-лактатный цикл - это циклический процесс, объединяющий реакции глюконеогенеза и реакции анаэробного гликолиза . Глюконеогенез происходит в печени, субстратом для синтеза глюкозы является лактат, поступающий в основном из эритроцитов или мышечной ткани.

В эритроцитах молочная кислота образуется непрерывно, так как для них анаэробный гликолиз является единственным способом образования энергии.

В скелетных мышцах высокое накопление молочной кислоты (лактата) является следствием гликолиза при очень интенсивной, субмаксимальной мощности, работе, при этом внутриклеточный рН снижается до 6,3-6,5. Но даже при работе низкой и средней интенсивности в скелетной мышце всегда образуется некоторое количество лактата. Убрать молочную кислоту можно только одним способом - превратить ее в пировиноградную кислоту. Однако сама мышечная клетка ни при работе, ни во время отдыха не способна превратить лактат в пируват из-за особенностей изофермента лактатдегидрогеназы-5 . Зато клеточная мембрана высоко проницаема для лактата и он движется по градиенту концентрации наружу. Поэтому во время и после нагрузки (при восстановлении) лактат легко удаляется из мышцы. Это происходит довольно быстро, всего через 0,5-1,5 часа в мышце лактата уже нет. Малая часть молочной кислоты выводится с мочой.

Большая часть лактата крови захватывается гепатоцитами, окисляется в пировиноградную кислоту и вступает на путь глюконеогенеза. Глюкоза, образованная в печени используется самим гепатоцитом или возвращается обратно в мышцы, восстанавливая во время отдыха запасы гликогена . Также она может распределиться по другим органам.

Глюкозо-аланиновый цикл

Целью глюкозо-аланинового цикла также является уборка пирувата, но, кроме этого решается еще одна немаловажная задача - уборка лишнего азота из мышцы.

При мышечной работе и в покое в миоците распадаются белки и образуемые аминокислоты трансаминируются с α-кетоглутаратом. Полученный глутамат взаимодействует с пируватом. Образующийся аланин является транспортной формой азота и пирувата из мышцы в печень. В гепатоците идет обратная реакция трансаминирования, аминогруппа передается на синтез мочевины, пируват используется для синтеза глюкозы.

Глюконеогенез энергетически затратен

Все аминокислоты, кроме кетогенных лейцина и лизина, способны участвовать в синтезе глюкозы. Углеродные атомы некоторых из них - глюкогенных - полностью включаются в молекулу глюкозы, некоторых - смешанных - частично. Кроме получения глюкозы, глюконеогенез обеспечивает и уборку «шлаков» - лактата, постоянно образуемого в эритроцитах или при мышечной работе, и глицерола, являющегося продуктом липолиза в жировой ткани.

Обходные пути

Как известно, в гликолизе существуют три необратимые реакции: пируваткиназная (десятая), фосфофруктокиназная (третья) и гексокиназная (первая). В этих реакциях происходит высвобождение энергии для синтеза АТФ. Поэтому в обратном процессе возникают энергетические барьеры, которые клетка обходит с помощью дополнительных реакций.

Глюконеогенез включает все обратимые реакции гликолиза, и особые обходные пути, то есть он не полностью повторяет реакции окисления глюкозы. Его реакции способны идти во всех тканях, кроме последней глюкозо-6-фосфатазной реакции, которая идет только в печени и почках. Поэтому, строго говоря, глюконеогенез идет только в этих двух органах.

Обход десятой реакции гликолиза

На этом этапе глюконеогенеза работают два ключевых фермента - в митохондриях пируваткарбоксилаза и в цитозоле фосфоенолпируват-карбоксикиназа.

В химическом плане обходной путь десятой реакции выглядит достаточно просто:

Упрощенный вариант обхода десятой реакции гликолиза


Однако дело в том, что пируваткарбоксилаза находится в митохондрии, а фосфоенолпируват-карбоксикиназа - в цитозоле. Дополняет проблему непроницаемость митохондриальной мембраны для оксалоацетата. Зато через мембрану может пройти малат, предшественник оксалоацетата по ЦТК.

Поэтому в реальности все выглядит более сложно:

Обход десятой реакции гликолиза


  1. В цитозоле пировиноградная кислота может появиться при окислении молочной кислоты и в реакции трансаминирования аланина. После этого пируват с импортом с ионами Н+, движущимися по протонному градиенту, проникает в митохондрии. В митохондриях пируваткарбоксилаза превращает пировиноградную кислоту в оксалоацетат. Эта реакция идет в клетке постоянно, являясь анаплеротической (пополняющей) реакцией ЦТК.
  2. Далее оксалоацетат мог бы превратиться в фосфоенолпируват, но для этого сначала он должен попасть в цитозоль. Поэтому происходит реакция восстановления оксалоацетата в малат при участии малатдегидрогеназы. В результате малат накапливается, выходит в цитозоль и здесь превращается обратно в оксалоацетат. Повернуть малатдегидрогеназную реакцию ЦТК вспять позволяет избыток НАДН в митохондриях. НАДН поступает из β-окисления жирных кислот, активируемого в условиях недостаточности глюкозы в гепатоците.
  3. В цитоплазме фосфоенолпируват-карбоксикиназа осуществляет превращение оксалоацетата в фосфоенолпируват, для реакции требуется энергия ГТФ. От молекулы отщепляется тот же углерод, что и присоединяется.

Глюконеогенез – это синтез глюкозы из неуглеводных компонентов: лактата , пирувата , глицерола , кетокислот цикла Кребса и других кетокислот, из аминокислот . Все аминокислоты, кроме кетогенных лейцина и лизина, способны участвовать в синтезе глюкозы. Углеродные атомы некоторых из них (глюкогенных) полностью включаются в молекулу глюкозы, некоторых (смешанных) частично.

Кроме получения глюкозы, глюконеогенез обеспечивает и уборку лактата , постоянно образуемого в эритроцитах или при мышечной работе, и глицерола , являющегося продуктом липолиза в жировой ткани.

Как известно, в гликолизе существуют три необратимые реакции: пируваткиназная (десятая), фосфофруктокиназная (третья) и гексокиназная (первая). В этих реакциях происходит высвобождение энергии для синтеза АТФ. Поэтому в обратном процессе возникают энергетические барьеры , которые клетка обходит с помощью дополнительных реакций.

Глюконеогенез включает все обратимые реакции гликолиза, и особые обходные пути , т.е. он не полностью повторяет реакции окисления глюкозы. Его реакции способны идти во всех тканях, кроме последней глюкозо-6-фосфатазной реакции, которая идет только в печени и почках . Поэтому, строго говоря, глюконеогенез идет только в этих двух органах.

На этом этапе глюконеогенеза работают два ключевых фермента – в митохондриях пируваткарбоксилаза и в цитозоле фосфоенолпируват-карбоксикиназа, при этом в реакциях тратятся два макроэрга - АТФ и ГТФ.

В химическом плане обходной путь десятой реакции выглядит достаточно просто:

Упрощенный вариант написания обхода десятой реакции гликолиза

Однако дело в том, что пируваткарбоксилаза находится в митохондрии, а – в цитозоле. Дополняет проблему непроницаемость митохондриальной мембраны для оксалоацетата . Зато через мембрану может пройти малат , предшественник оксалоацетата по ЦТК.

Поэтому в реальности все выглядит более сложно:

1. В цитозоле пировиноградная кислота может появиться при окислении молочной кислоты и в реакции трансаминирования аланина . После этого пируват симпортом с ионами Н + , движущимися по протонному градиенту, проникает в митохондрии. В митохондриях пируваткарбоксилаза превращает пировиноградную кислоту в оксалоацетат .

Пируваткарбоксилазная реакция идет в клетке постоянно, так как оксалоацетат является главным регулятором скорости ЦТК. Реакция называется анаплеротической (пополняющей) реакцией ЦТК.

2. Далее оксалоацетат мог бы превратиться в фосфоенолпируват, но для этого сначала он должен попасть в цитозоль. Поэтому происходит реакция восстановления оксалоацетата в малат при участии малатдегидрогеназы . В результате малат накапливается, выходит в цитозоль и здесь превращается обратно в оксалоацетат.

Повернуть малатдегидрогеназную реакцию ЦТК вспять позволяет избыток НАДН в митохондриях. НАДН поступает из β-окисления жирных кислот , активируемого в гепатоците при голодании.

3. В цитоплазме фосфоенолпируват-карбоксикиназа осуществляет превращение оксалоацетата в фосфоенолпируват , для реакции требуется энергия ГТФ. От молекулы отщепляется тот же углерод, что и присоединяется.

Обход десятой реакции гликолиза

Обход третьей реакции гликолиза

Второе препятствие на пути синтеза глюкозы – фосфофруктокиназная реакция – преодолевается с помощью фермента фруктозо-1,6-дифосфатазы . Этот фермент есть в почках, печени, поперечно-полосатых мышцах. Таким образом, эти ткани способны синтезировать фруктозо-6-фосфат и глюкозо-6-фосфат.

49. Упрощенная схема гидролиза крахмала и гликогена в животном организме.
50. Гликолиз и его основные стадии. Значение гликолиза.

Сущность, суммарные реакции и КПД гликолиза.

Роль углеводного обмена. Источники глюкозы и пути ее использования в организме.

Основная роль углеводов определяется их энергетической функцией.

Глюко́за (от др.-греч. γλυκύς сладкий ) (C 6 H 12 O 6), или виноградный сахар - это белое или бесцветное вещество без запаха, имеющее сладкий вкус, растворимое в воде. Тростниковый сахар приблизительно на 25% слаще глюкозы. Глюкоза является самым важным для человека углеводом. В организме человека и животных глюкоза является основным и наиболее универсальным источником энергии для обеспечения метаболических процессов. Глюкоза депонируется у животных в виде гликогена, у растений - в виде крахмала.

Источники глюкозы
В обычных условиях основным источником углеводов для человека являются углеводы пищи. Суточная потребность в углеводах составляет примерно 400 г. В процессе усвоения пищи все экзогенные полимеры углеводной природы расщепляются до мономеров, во внутреннюю среду организма из кишечника поступают лишь моносахариды и их производные.

Глюкоза крови является непосредственным источником энергии в организме. Быстрота ее распада и окисления, а также возможность быстрого извлечения из депо обеспечивают экстренную мобилизацию энергетических ресурсов при стремительно нарастающих затратах энергии в случаях эмоционального возбуждения, при интенсивных мышечных нагрузках и др.
Уровень глюкозы в крови составляет 3,3-5,5 ммоль/л (60- 100 мг%) и является важнейшей гомеостатической константой организма. Особенно чувствительной к понижению уровня глюкозы в крови (гипогликемия) является ЦНС. Незначительная гипогликемия проявляется общей слабостью и быстрой утомляемостью. При снижении уровня глюкозы в крови до 2,2-1,7 ммоль/л (40- 30 мг%) развиваются судороги, бред, потеря сознания, а также вегетативные реакции: усиленное потоотделение, изменение просвета кожных сосудов и др. Это состояние получило название «гипогликемическая кома». Введение в кровь глюкозы быстро устраняет данные расстройства.

Энергетическая роль глюкозы.

1. В клетках глюкоза используется как источник энергии. Основная часть глюкозы, пройдя ряд преобразований, расходуется на синтез АТФ в процессе окислительного фосфорилирования. Более 90% углеводов расходуется для выработки энергии в процессе гликолиза.

2. Дополнительный путь энергетического использования глюкозы – без образования АТФ. Этот путь получил название пентозофосфатного. В печени он составляет около 30% преобразования глюкозы, в жировых клетках – несколько больше. Эта энергия расходуется для образования НАДФ, который служит донором водорода и электронов, необходимых для синтетических процессов – образования нуклеиновых и желчных кислот, стероидных гормонов.

3. Превращение глюкозы в гликоген или жир происходит в клетках печени и жировой ткани. Когда запасы углеводов низки, например, при стрессе, развивается глюнеогенез – синтез глюкозы из аминокислот и глицерина.

Схема использования глюкозы в организме

Метаболизм углеводов в организме человека состоит из следующих процессов:

1. Расщепление в пищеварительном тракте поступающих с пищей поли- и дисахаридов до моносахаридов, дальнейшее всасывание моносахаридов из кишечника в кровь.

2. Синтез и распад гликогена в тканях (гликогенез и гликогенолиз), прежде всего в печени.

Гликоген - основная форма депонирования глюкозы в клетках животных. У растений эту же функцию выполняет крахмал. В структурном отношении гликоген, как и крахмал, представляет собой разветвленный полимер из глюкозы. Однако гликоген более разветвлен и компактен. Ветвление обеспечивает быстрое освобождение при распаде гликогена большого количества концевых мономеров.

Роль гликогена:

Является основной формой хранения глюкозы в животных клетках

Образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы

Откладывается в виде гранул в цитоплазме во многих типах клеток (главным образом печени и мышц)

Только гликоген, запасённый в клетках печени, может быть переработан в глюкозу для питания всего организма. Общая масса гликогена в печени может достигать 100-120 граммов у взрослых

Гликоген печени никогда не расщепляется полностью

В мышцах гликоген перерабатывается в глюкозо-6-фосфат, исключительно для локального потребления. В мышцах гликогена накапливается не более 1 % от общей массы мышц

Небольшое количество гликогена обнаружено в почках, и ещё меньшее - в глиальных клетках мозга и лейкоцитах

Синтез и распад гликогена не являются обращением друг в друга, эти процессы происходят разными путями.

Молекула гликогена содержит до 1 млн. остатков глюкозы, следовательно, на синтез расходуется значительное количество энергии. Необходимость превращения глюкозы в гликоген связана с тем, что накопление значительного количества глюкозы в клетке привело бы к повышению осмотического давления, так как глюкоза хорошо растворимое вещество. Напротив, гликоген содержится в клетке в виде гранул, и мало растворим.

Синтез гликогена :

Гликоген синтезируется в период пищеварения (в течение 1-2 часов после приема углеводной пищи). Гликогенез особенно интенсивно протекает в печени и скелетных мышцах.

Для включения 1 остатка глюкозы в цепь гликогена тратится 1 АТФ и 1 УТФ

Основной активатор – гормон ИНСУЛИН

Распад гликогена :

Активизируется в промежутках между приемами пищи и при физической работе, когда снижается уровень глюкозы в крови (относительная гипогликемия)

Основные активаторы распада:

в печени – гормон ГЛЮКАГОН

в мышцах – гормон АДРЕНАЛИН

Упрощенная схема гидролиза крахмала и гликогена в животном организме .

3. Пентозофосфатный путь (пентозный цикл) - анаэробный путь прямого окисления глюкозы.

По этому пути идет не более 25-30% глюкозы поступившей в клетки

Итоговое уравнение пентозофосфатного пути :

6 молекул глюкозы + 12 НАДФ → 5 молекул глюкозы + 6 СО2 + 12 НАДФН2

Биологическая роль пентозофосфатного пути у взрослого человека состоит в выполнении двух важных функций:

· он является поставщиком пентоз, которые необходимы для синтеза нуклеиновых кислот, коферментов, макроэргов для пластических целей.

· служит источником НАДФН2, который, в свою очередь, используется для:

1. восстановительных синтезов стероидных гормонов, жирных кислот

2. активно участвует в обезвреживании токсичных веществ в печени

4. Гликолиз - распад глюкозы. Первоначально под этим термином обозначали только анаэробное брожение, которое завершается образованием молочной кислоты (лактата) или этанола и углекислого газа. В настоящее время понятие «гликолиз» используется более широко для описания распада глюкозы, проходящего через образование глюкозо-6-фосфата, фруктозодифосфата и пирувата как в отсутствии, так и в присутствии кислорода. В последнем случае употребляется термин «аэробный гликолиз», в отличие от «анаэробного гликолиза», завершающегося образованием молочной кислоты или лактата.

ГЛИКОЛИЗ

Маленькая незаряженная молекула глюкозы способна путем диффузии покидать клетку. Чтобы глюкоза оставалась в клетке, ее надо перевести в заряженную форму (обычно глюкозо-6-фосфат). Эта реакция называется блокирующей, или запирающей.

Дальнейшие пути использования глюкозо-6-фосфата в клетках:

Гликолиз и полное аэробное окисление глюкозы

Пентозофосфатный цикл (частичное окисление глюкозы до пентоз)

Синтез гликогена и т.д.

Гликолиз происходит в цитоплазме клеток. Конечным продуктом этого этапа является пировиноградная кислота.

АНАЭРОБНЫЙ ГЛИКОЛИЗ – процесс расщепления глюкозы с образованием конечного продукта лактата через пируват. Он протекает без использования кислорода и поэтому не зависит от работы митохондриальной дыхательной цепи.

Протекает в мышцах при выполнении интенсивных нагрузок, в первые минуты мышечной работы, в эритроцитах (в которых отсутствуют митохондрии), а также в разных органах в условиях ограниченного снабжения их кислородом, в том числе в опухолевых клетках. Этот процесс служит показателем повышенной скорости деления клеток при недостаточной обеспеченности их системой кровеносных сосудов.

Стадии гликолиза.

1. Подготовительная стадия (протекает с затратой двух молекул АТФ)

Глюкоза+2АТФ→глюкозо-6-фосфат→фруктозо-1,6-дифосфат

Ферменты: глюкокиназа; фосфофруктоизомераза;

2. Стадия образования триоз (расщепление глюкозы на 2 трехуглеродных фрагмента)

Фруктозо-1,6-дифосфат→ 2 глицероальдегид-3-фосфат

3. Окислительная стадия гликолиза (дает 4 моль АТФ на 1 моль глюкозы)

2 глицероальдегид-3-фосфата+2НАД+→2 ПВК +2 АТФ

2 ПВК + 2 НАДН*Н+→2 лактата + 2НАД+

2НАД дает 6 АТФ

Такой способ синтеза АТФ, осуществляющийся без участия тканевого дыхания и, следовательно, без потребления кислорода, обеспеченный запасом энергии субстрата, называется анаэробным, или субстратным, фосфорилированием .

Это самый быстрый путь получения АТФ. При этом следует учесть, что на первых стадиях расходуется две молекулы АТФ на активацию глюкозы и фруктозо-6-фосфата. В итоге превращение глюкозы в пируват сопровождается синтезом восьми молекул АТФ.

Общее уравнение гликолиза выглядит так:

Глюкоза + О2 + 8АДФ + 8 Н3 РО4 → 2 Пируват + 2Н2О + 8 АТФ,

Значение гликолиза:

1. Гликолиз представляет собой независимый от митохондрий путь получения АТФ в цитоплазме (2 моль АТФ на 1 моль глюкозы). Основное физиологическое значение – использование энергии, которая освобождается в этом процессе для синтеза АТФ. Метаболиты гликолиза используются для синтеза новых соединений (нуклеозидов; аминокислот: серин, глицин, цистеин).

2. Если гликолиз протекает до лактата, то в процессе происходит «регенерация» НАД+ без участия тканевого дыхания

3. В клетках, не содержащих митохондрий (эритроциты, сперматозоиды), гликолиз является единственным способом синтеза АТФ

4. При отравлении митохондрий угарным газом и другими дыхательными ядами гликолиз позволяет выжить

Регуляция гликолиза:

1. Скорость гликолиза снижается, если в клетку не поступает глюкоза (регуляция количеством субстрата), однако вскоре начинается распад гликогена и скорость гликолиза восстанавливается

2. АМФ (сигнал недостатка энергии)

3. Регуляция гликолиза с помощью гормонов. Стимулируют гликолиз: Инсулин, Адреналин (стимулирует распад гликогена; в мышцах при этом образуется глюкозо-6 фосфат и происходит активация гликолиза субстратом). Ингибирует гликолиз: Глюкагон (репрессирует ген пируваткиназы; переводит пируваткиназу в неактивную форму)

Смысл анаэробного гликолиза кратко

  • В условиях интенсивной мышечной работы, при гипоксии (например, интенсивный бег на 200м в течении 30 с) распад углеводов временно протекает в анаэробных условиях
  • Молекулы НАДН не могут отдать свой водород, так как «не работают» дыхательная цепь в митохондриях
  • Тогда в цитоплазме хорошим акцептором водорода является пируват - конечный продукт 1-го этапа
  • В состоянии покоя, наступающего после интенсивной мышечной работы, в клетку начинает поступать кислород
  • Это приводит к «запуску» дыхательной цепи
  • В результате чего анаэробный гликолиз тормозится автоматически и переходит на аэробный, более энергетически выгодный
  • Торможение анаэробного гликолиза поступившим в клетку кислородом называется ЭФФЕКТОМ ПАСТЕРА

ЭФФЕКТ ПАСТЕРА. Заключается в угнетении дыханием (О 2) анаэробного гликолиза, т.е. происходит переключение с аэробного гликолиза на анаэробное окисление. Если ткани снабжены О 2 , то 2НАДН 2 , образовавшийся в процессе центральной реакции оксидоредукции, окислится в дыхательной цепи, поэтому ПВК не превращается в лактат, а в ацетил-КоА, который вовлекается в ЦТК.

Первый этап распада углеводов – анаэробный гликолиз - практически обратим. Из пирувата, а также из возникающего в анаэробных условиях лактата (молочная кислота), может синтезироваться глюкоза, а из неё гликоген.

Сходство анаэробного и аэробного гликолиза заключается в том, что до стадии образования ПВК эти процессы протекают одинаково при участии тех же ферментов.

ПОЛНОЕ АЭРОБНОЕ ОКИСЛЕНИЕ ГЛЮКОЗЫ (ПАОГ):

Благодаря активности митохондрий, можно полностью окислить глюкозу до углекислого газа и воды.

В этом случае гликолиз является первым этапом окислительного метаболизма глюкозы.

Перед включением митохондрий в ПАОГ следует превратить гликолитический лактат в ПВК.

Основные этапы ПАОГ:

1. Гликолиз с последующим превращением 2 моль лактата в 2 моль ПВК и транспортом протонов в митохондрию

2. Окислительное декарбоксилирование 2 моль пирувата в митохондриях с образованием 2 моль ацетилСоА

3.Сгорание ацетильного остатка в цикле Кребса (2 оборота цикла Кребса)

4. Тканевое дыхание и окислительное фосфорилирование: используются НАДН*Н+ и ФАДН2, генерированные в цикле Кребса, окислительном декарбоксилировании пирувата и перенесенные с помощью малатного челнока из цитоплазмы

Этапы катаболизма на примере ПАОГ :

Гликолиз, транспорт протонов в митохондрию (I этап),

Окислительное декарбоксилирование пирувата (II этап)

Цикл Кребса – III этап

Тканевое дыхание и сопряженное с ним окислительное фосфорилирование – IV этап (митохондриальный синтез АТФ)

II. В ходе второго этапа от пировиноградной кислоты отщепляется углекислый газ и два атома водорода. Отщепленные атомы водорода по дыхательной цепи передаются на кислород с одновременным синтезом АТФ. Из пирувата же образуется уксусная кислота. Она присоединяется к особому веществу, коферменту А.

Это вещество является переносчиком остатков кислот. Результатом этого процесса является образование вещества ацетилкофермент А. Это вещество обладает высокой химической активностью.

Итоговое уравнение второго этапа :

СЗН4ОЗ+ 1/2О2+ HSKoA + 3 АДФ + 3 НзРО4 - СНз- С ~ SKoA + СО2+ Н2О + 3АТФ

Пируват Кофермент А Ацетил-КоА

Ацетилкофермент А подвергается дальнейшему окислению в цикле трикарбоновых кислот (цикл Кребса) и превращается в СО2 и Н2О.

III. Это и есть третий этап . За счёт выделяющейся энергии на этом этапе также осуществляется синтез АТФ.

Цикл трикарбоновых кислот (ЦТК) - это завершающий этап катаболизма не только углеводов, но и всех остальных классов органических соединений. Это обусловлено тем, что при распаде углеводов, жиров и аминокислот образуется общий промежуточный продукт - уксусная кислота, связанная со своим переносчиком - коферменгом А - в форме ацетилкофермента А.

Цикл Кребса протекает в митохондриях с обязательным потреблением кислорода и требует функционирования тканевого дыхания.

Первой реакцией цикла является взаимодействие ацетилкофермента А со щавелево-уксусной кислотой(ЩУК) с образованием лимонной кислоты.

Лимонная кислота содержит три карбоксильные группы, т. е. является трикарбоновой кислотой, что обусловило название этого цикла.

Поэтому эти реакции и называют циклом лимонной кислоты. Образуя ряд промежуточных трикарбоновых кислот, лимонная кислота вновь превращается в щавелево-уксусную и цикл повторяется. Результатом этих реакций является образование отщепленного водорода, которые, пройдя по дыхательной цепи, образует с кислородом воду. Перенос каждой пары атомов водорода на кислород сопровождается синтезом трех молекул АТФ. Всего при окислении одной молекулы ацетилкофермента А синтезируется 12 молекул АТФ.

Итоговое уравнение цикла Кребса (третьего этапа):

СНз- С ~ SKoA + 2О2+ Н2О + 12АДФ + 12 Н3РО → НSKoA + 2 СО2 + Н2О + 12АТФ

Схематично цикл Кребса можно представить следующим образом:

В результате всех этих реакции образуется 36 молекул АТФ. В сумме гликолиз дает 38 молекул АТФ в пересчете на одну молекулу глюкозы.

Глюкоза + 6 О2 + 38 АДФ + 38 Н3 РО4 → 6СО2 + 6 Н2О +38 АТФ

Биологическая роль ЦТК

Цикл Кребса выполняет интеграционную, амфиболическую (т.е. катаболическую и анаболическую), энергетическую и водород-донорную роль.

1. Интеграционная роль состоит в том, что ЦТК представляет собой конечный общий путь окисления топливных молекул – углеводов, жирных кислот и аминокислот.

2. В ЦТК происходит окисление ацетил-КоА – это катаболическая роль.

3. Анаболическая роль цикла заключается в том, что он поставляет промежуточные продукты для биосинтетических процессов. Например, оксалоацетат используется для синтеза аспартата, a-кетоглутарат – для образования глутамата, сукцинил-КоА – для синтеза гема.

4. Одна молекула АТФ образуется в ЦТК на уровне субстратного фосфорилирования –это энергетическая роль.

5. Водород-донорная состоит в том, что ЦТК обеспечивает восстановленными коферментами НАДН (Н+) и ФАДН2дыхательную цепь, в которой происходит окисление водорода этих коферментов до воды, сопряженное с синтезом АТФ. При окислении одной молекулы ацетил-КоА в ЦТК образуются 3 НАДН(Н+) и 1 ФАДН2

IV этап. Тканевое дыхание и сопряженное с ним окислительное фосфорилирование (митохондриальный синтез АТФ)

Это перенос электронов от восстановленных нуклеотидов на кислород (через дыхательную цепь). Он сопровождается образованием конечного продукта - молекулы воды. Этот транспорт электронов сопряжен с синтезом АТФ в процессе окислительного фосфорилирования.

Окисление органических веществ в клетках, сопровождающееся потреблением кислорода и синтезом воды, называют тканевым дыханием , а цепь переноса электронов (ЦПЭ) – дыхательной цепью .

Особенности биологического окисления:

1.Протекает при температуре тела;

2.В присутствии Н2О;

3.Протекает постепенно через многочисленные стадии с участием ферментов-переносчиков, которые снижают энергию активации, происходит уменьшение свободной энергии, в результате чего энергия выделяется порциями. Поэтому окисление не сопровождается повышением температуры и не приводит к взрыву.

Электроны, поступающие в ЦПЭ, по мере их продвижения от одного переносчика к другому теряют свободную энергию. Значительная часть этой энергии запасается в АТФ, а часть рассеивается в виде тепла.

Перенос электронов от окисляемых субстратов к кислороду происходит в несколько этапов. В нем участвует большое количество промежуточных переносчиков, каждый из которых способен присоединять электроны от предыдущего переносчика и передавать следующему. Так возникает цепь окислительно-восстановительных реакций, в результате чего происходят восстановление О2 и синтез Н2О.

Транспорт электронов в дыхательной цепи сопряжён (связан) с образованием протонного градиента, необходимого для синтеза АТФ. Этот процесс называется окислительным фосфорилированием . Иными словами, окислительное фосфорилировние – это процесс, в котором энергия биологического окисления превращается в химическую энергию АТФ.

Функция дыхательной цепи – утилизация восстановленных дыхательных переносчиков, образующихся в реакциях метаболического окисления субстратов (главным образом в цикле трикарбоновых кислот). Каждая окислительная реакция в соответствии с величиной высвобождаемой энергии «обслуживается» соответствующим дыхательным переносчиком: НАДФ, НАД или ФАД. В дыхательной цепи происходит дискриминация протонов и электронов: в то время как протоны переносятся через мембрану, создавая ΔрН, электроны движутся по цепи переносчиков от убихинона к цитохромоксидазе, генерируя разность электрических потенциалов, необходимую для образования АТФ протонной АТФ-синтазой. Таким образом, тканевое дыхание «заряжает» митохондриальную мембрану, а окислительное фосфорилирование «разряжает» ее.

ДЫХАТЕЛЬНЫЙ КОНТРОЛЬ

Перенос электронов по ЦПЭ и синтез АТФ тесно сопряжены, т.е. могут происходить только одновременно и синхронно.

При увеличении расхода АТФ в клетке увеличивается количество АДФ и его поступление в митохондрии. Повышение концентрации АДФ (субстрата АТФ-синтазы) увеличивает скорость синтеза АТФ. Таким образом, скорость синтеза АТФ точно соответствует потребности клетки в энергии. Ускорение тканевого дыхания и окислительного фосфорилирования при повышении концентрации AДФ называется дыхательным контролем.

В реакциях ЦПЭ часть энергии не превращается в энергию макроэргических связей АТФ, а рассеивается в виде теплоты.

Разность электрических потенциалов на митохондриальной мембране, создаваемая дыхательной цепью, которая выступает в качестве молекулярного проводника электронов, является движущей силой для образования АТФ и других видов полезной биологической энергии. Эта концепция превращения энергии в живых клетках была выдвинута П. Митчеллом в 1960 г. для объяснения молекулярного механизма сопряжения транспорта электронов и образования АТФ в дыхательной цепи и быстро получила международное признание. За развитие исследований в области биоэнергетики П. Митчеллу в 1978 г. была присуждена Нобелевская премия. В 1997 г. П. Бойеру и Дж. Уокеру была присуждена Нобелевская премия за выяснение молекулярных механизмов действия главного фермента биоэнергетики -протонной АТФ-синтазы.

Расчет энергетического выхода ПАОГ по этапам:

Гликолиз – 2 АТФ (субстратное фосфорилирование)

Перенос протонов в митохондрию – 2 НАДН*Н+=6 АТФ

Окислительное декарбоксилирование 2 моль ПВК – 2 НАДН*Н+=6 АТФ

Цикл Кребса (с учетом ТД и ОФ) – 12*2=24 моль АТФ при сгорании 2 ацетильных остатков

ИТОГО : 38 моль АТФ при полном сгорании 1 моль глюкозы

Значение гликолиза:

1) осуществляет связь между дыхательными субстратами и циклом Кребса;

2) поставляет на нужды клетки две молекулы АТФ и две молекулы НАДH при окислении каждой молекулы глюкозы (в условиях аноксии гликолиз, по-видимому, служит основным источником АТФ в клетке);

3) производит интермедиаты для синтетических процессов в клетке (например, фосфоенолпируват, необходимый для образования фенольных соединений и лигнина);

4) в хлоропластах обеспечивает прямой путь для синтеза АТФ, независимый от поставок НАДФH; кроме того, через гликолиз в хлоропластах запасенный крахмал метаболизируется в триозы, которые затем экспортируются из хлоропласта.

КПД гликолиза составляет 40%.

5. Взаимопревращение гексоз

6. Глюконеогенез - образование углеводов из неуглеводных продуктов (пирувата, лактата, глицерина, аминокислот, липидов, белков и т. д.).


Похожая информация.