Что бывает в форме ромба. Геометрические фигуры. Ромб. Диагонали ромба являются биссектрисами его углов

И снова вопрос: ромб - это параллелограмм или нет?

С полным правом - параллелограмм , потому что у него и (вспоминаем наш признак 2 ).

И снова, раз ромб - параллелограмм , то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Свойства ромба

Посмотри на картинку:

Как и в случае с прямоугольником, свойства эти - отличительные , то есть по каждому из этих свойств можно заключить, что перед нами не просто параллелограмм , а именно ромб.

Признаки ромба

И снова обрати внимание : должен быть не просто четырехугольник, у которого перпендикулярны диагонали, а именно параллелограмм . Убедись:

Нет, конечно, хотя его диагонали и перпендикулярны, а диагональ - биссектриса углов и. Но … диагонали не делятся, точкой пересечения пополам, поэтому - НЕ параллелограмм , а значит, и НЕ ромб .

То есть квадрат - это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Понятно почему? - ромб - биссектриса угла A, который равен. Значит делит (да и тоже) на два угла по.

Ну, это совсем ясно: прямоугольник диагонали равны; ромб диагонали перпендикулярны, и вообще - параллелограмм диагонали делятся точкой пересечения пополам.

СРЕДНИЙ УРОВЕНЬ

Свойства четырехугольников. Параллелограмм

Свойства параллелограмма

Внимание! Слова «свойства параллелограмма » означают, что если у тебя в задаче есть параллелограмм, то всем нижеследующим можно пользоваться.

Теорема о свойствах параллелограмма.

В любом параллелограмме:

Давай-ка поймём, почему это всё верно, иными словами ДОКАЖЕМ теорему.

Итак, почему верно 1)?

Раз - параллелограмм, то:

  • как накрест лежащие
  • как накрест лежащие.

Значит, (по II признаку: и - общая.)

Ну вот, а раз, то и - всё! - доказали.

Но кстати! Мы ещё доказали при этом и 2)!

Почему? Но ведь (смотри на картинку), то есть, а именно потому, что.

Осталось только 3).

Для этого всё-таки придётся провести вторую диагональ.

И теперь видим, что - по II признаку (угла и сторона «между» ними).

Свойства доказали! Перейдём к признакам.

Признаки параллелограмма

Напомним, что признак параллелограмма отвечает на вопрос "как узнать?", что фигура является параллелограммом.

В значках это так:

Почему? Хорошо бы понять, почему - этого хватит. Но смотри:

Ну вот и разобрались, почему признак 1 верен.

Ну, это ещё легче! Снова проведём диагональ.

А значит:

И тоже несложно. Но …по-другому!

Значит, . Ух! Но и - внутренние односторонние при секущей!

Поэтому тот факт, что означает, что.

А если посмотришь с другой стороны, то и - внутренние односторонние при секущей! И поэтому.

Видишь, как здорово?!

И опять просто:

Точно так же, и.

Обрати внимание: если ты нашел хотя бы один признак параллелограмма в своей задаче, то у тебя точно параллелограмм, и ты можешь пользоваться всеми свойствами параллелограмма.

Для полной ясности посмотри на схему:


Свойства четырехугольников. Прямоугольник.

Свойства прямоугольника:

Пункт 1) совсем очевидный - ведь просто выполнен признак 3 ()

А пункт 2) - очень важный . Итак, докажем, что

А значит, по двум катетам (и - общий).

Ну вот, раз треугольники и равны, то у них и гипотенузы и тоже равны.

Доказали, что!

И представь себе, равенство диагоналей - отличительное свойство именно прямоугольника среди всех параллелограммов. То есть верно такое утверждение^

Давай поймём, почему?

Значит, (имеются в виду углы параллелограмма). Но ещё раз вспомним, что - параллелограмм, и поэтому.

Значит, . Ну и, конечно, из этого следует, что каждый из них по! Ведь в сумме-то они должны давать!

Вот и доказали, что если у параллелограмма вдруг (!) окажутся равные диагонали, то это точно прямоугольник .

Но! Обрати внимание! Речь идёт о параллелограммах ! Не любой четырехугольник с равными диагоналями - прямоугольник, а только параллелограмм!

Свойства четырехугольников. Ромб

И снова вопрос: ромб - это параллелограмм или нет?

С полным правом - параллелограмм, потому что у него и (Вспоминаем наш признак 2).

И снова, раз ромб - параллелограмм, то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Но есть и особенные свойства. Формулируем.

Свойства ромба

Почему? Ну, раз ромб - это параллелограмм, то его диагонали делятся пополам.

Почему? Да, потому же!

Иными словами, диагонали и оказались биссектрисами углов ромба.

Как в случае с прямоугольником, свойства эти - отличительные , каждые из них является ещё и признаком ромба.

Признаки ромба.

А это почему? А посмотри,

Значит, и оба этих треугольника - равнобедренные.

Чтобы быть ромбом, четырёхугольник сперва должен «стать» параллелограммом, а потом уже демонстрировать признак 1 или признак 2.

Свойства четырехугольников. Квадрат

То есть квадрат - это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Понятно, почему? Квадрат - ромб - биссектриса угла, который равен. Значит делит (да и тоже) на два угла по.

Ну, это совсем ясно: прямоугольник диагонали равны; ромб диагонали перпендикулярны, и вообще - параллелограмм диагонали делятся точкой пересечения пополам.

Почему? Ну, просто применим теорему Пифагора к.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Свойства параллелограмма:

  1. Противоположные стороны равны: , .
  2. Противоположные углы равны: , .
  3. Углы при одной стороне составляют в сумме: , .
  4. Диагонали делятся точкой пересечения пополам: .

Свойства прямоугольника:

  1. Диагонали прямоугольника равны: .
  2. Прямоугольник - параллелограмм (для прямоугольника выполняются все свойства параллелограмма).

Свойства ромба:

  1. Диагонали ромба перпендикулярны: .
  2. Диагонали ромба являются биссектрисами его углов: ; ; ; .
  3. Ромб - параллелограмм (для ромба выполняются все свойства параллелограмма).

Свойства квадрата:

Квадрат - ромб и прямоугольник одновременно, следовательно для квадрата выполняются все свойства прямоугольника и ромба. А так же.

1. - прямая. Соответственно, решением неравенства
, является полуплоскость, лежащая ниже или выше этой прямой.

2.
- гипербола, т.к. отсюда
. Эта гипербола делит плоскость на 3 (!!!) области, поэтому знак неравенства надо проверять в каждой из них.

3.
- «лежачая парабола», т.е. парабола, повернутая на 90 по часовой стрелке. Делит плоскость на 2 части (внутри параболы и вне ее.)


4.
- окружность с центром в начале координат, радиуса R (где R>0). Решением неравенства
является круг (т.е. вся область, лежащая внутри окружности, вместе с границей), а неравенства
- область вне круга.

5.
- при а > 0 – квадрат с вершинами в точках (а;0), (0; а), (-а; 0), (0; -а). Соответственно, решением неравенства
является область внутри квадрата, а неравенства
- область вне квадрата.

Преобразования графиков:
1 f(x-a; y-b)=0, надо сначала построить график уравнения f(x; y)=0, а затем сместить его на а единиц по оси Ох, и на b единиц по оси Оy.
2 . Чтобы построить график уравнения
, надо выполнить симметрию графика уравнения f(x; y)=0 относительно оси Оy (не забыв при этом стереть часть исходного графика, лежащую левее оси Оy).
3 . Чтобы построить график уравнения
, надо выполнить симметрию графика уравнения f(x; y)=0 относительно оси Ох (не забыв при этом стереть часть исходного графика, лежащую ниже оси Ох).
4. Соответственно, чтобы построить график уравнения
, надо сначала построить график уравнения f(x; y)=0 (т.е. убрать все модули) в первой четверти , а затем выполнить симметрию этого графика относительно всех осей.
Неравенства с двумя переменными.

Чаще всего для решения используют «метод областей». То есть сначала в неравенстве заменяют знак неравенства на знак «=» и изображают полученный график на координатной плоскости. Затем «методом пробной точки» проверяют знак неравенства в каждой из образовавшихся областей.

Кроме этого, отдельно можно рассмотреть неравенства вида
и
. Для их решения сначала строят график функции
. Тогда решением первого неравенства будут точки, лежащие ниже этого графика, а решением второго, соответственно, точки, лежащие выше.

Можно еще выделить неравенства вида
. (Знак неравенства может быть и другим). Чтобы его решить, нужно сплошной линией изобразить график уравнения
и пунктирной линией - график уравнения
и проверить знак неравенства в каждой получившейся области(выбрав любую точку из каждой области).

Пример 1.

9.20 (г)

Изобразите решение неравенства
и определите все значения а, при которых данное неравенство имеет хотя бы одно решение.

Решение.


Данное неравенство равносильно следующему:
.


Для этого сначала построим график уравнения
.

а) В свою очередь, для построения этого графика воспользуемся правилом 4 преобразования графиков. Здесь f(x; a) = 5x + 2a . Графиком этого уравнения является прямая, пересекающая оси координат в точках (2, 0) и (0, 5). Т.к. мы рассматриваем случай без модулей (т.е. x
и y), то возьмем только часть этой прямой, лежащую в первой четверти.


б) чтобы построить график уравнения , выполним симметрию полученного отрезка относительно всех координатных осей и начала координат. Получим ромб с «центром» в начале координат.


б) Теперь сместим этот график на 3 единицы вправо и на 1 единицу вниз.


Получили график уравнения


  1. Видим, что координатная плоскость оказалась разбита на 2 области, внутри ромба и вне его. Видим, что, например, точка (3,-1) принадлежит внутренней области. Подставим ее координаты в неравенство . Убеждаемся, что неравенство в данной точке выполнено. Значит, все точки этой области удовлетворяют неравенству. Для проверки подставим и точку из внешней области в неравенство. Например, это точка (0, 8). При данных значениях переменных неравенство обращается в неверное числовое неравенство, а, значит, никакая точка из внешней области не удовлетворяет неравенству. Окончательно получаем, что решением неравенства является «внутренность» ромба. Показываем это штриховкой.


Ответ: данное неравенство имеет решение при

Пример 2 . Изобразить на координатной плоскости множество точек, удовлетворяющих неравенству
.

Решение

1. Построим линии, ограничивающие график неравенства. Это будут линии, которые являются изображением множеств тех точек, в которых числитель и знаменатель обращаются в 0. Т.е. построим графики уравнений

(А)

и
(Б)

А) Графиком данного уравнения является окружность с центром в точке (2, -3) и радиусом, равным 4 – изображается сплошной линией, т.к. неравенство нестрогое.

Б) График этого уравнения – «лежачая парабола», опущенная на 1 единицу вниз – изображается пунктирной линией в силу область определения неравенства.




2. Пусть ,
. Тогда наше неравенство принимает вид
.

Окружность и парабола разбивают координатную плоскость на 4 области.


Заметим, что область внутри окружности соответствует неравенству
, т.е.
. Область вне окружности – неравенству
, т.е.
.

Аналогично, область «внутри», или правее параболы соответствует неравенству
или
, а область «вне», или левее параболы – неравенству
или
.

И, наконец, в области IV и , т.е. дробь неположительна и неравенство не выполнено.

Таким образом, решением неравенства является объединение областей I и III.

AB \parallel CD,\;BC \parallel AD

AB = CD,\;BC = AD

2. Диагонали ромба перпендикулярны.

AC\perp BD

Доказательство

Так как ромб является параллелограммом, то его диагонали делятся пополам.

Значит, \triangle BOC = \triangle DOC по трем сторонам (BO = OD , OC — совместная, BC = CD ). Получаем, что \angle BOC = \angle COD , и они смежны.

\Rightarrow \angle BOC = 90^{\circ} и \angle COD = 90^{\circ} .

3. Точка пересечения диагоналей делит их пополам.

AC=2\cdot AO=2\cdot CO

BD=2\cdot BO=2\cdot DO

4. Диагонали ромба являются биссектрисами его углов.

\angle 1 = \angle 2; \; \angle 5 = \angle 6 ;

\angle 3 = \angle 4; \; \angle 7 = \angle 8 .

Доказательство

По причине того, что диагонали разделены точкой пересечения пополам, и все стороны ромба равны друг другу, то вся фигура делится диагоналями на 4 равных треугольника:

\triangle BOC, \; \triangle BOA, \; \triangle AOD, \; \triangle COD .

Это значит, что BD , AC — биссектрисы.

5. Диагонали образуют из ромба 4 прямоугольных треугольника.

6. Любой ромб может содержать окружность с центром в точке пересечения его диагоналей.

7. Сумма квадратов диагоналей равна квадрату одной из сторон ромба умноженному на четыре

AC^2 + BD^2 = 4\cdot AB^2

Признаки ромба

1. Параллелограмм с перпендикулярными диагоналями является ромбом.

\begin{cases} AC \perp BD \\ ABCD \end{cases} — параллелограмм, \Rightarrow ABCD — ромб.

Доказательство

ABCD является параллелограммом \Rightarrow AO = CO ; BO = OD . Также указано, что AC \perp BD \Rightarrow \triangle AOB = \triangle BOC = \triangle COD = \triangle AOD - по 2-м катетам.

Получается, что AB = BC = CD = AD .

Доказано!

2. Когда в параллелограмме хотя бы одна из диагоналей разделяет оба угла (через которые она проходит) пополам, то этой фигурой будет ромб.

Доказательство

На заметку: не каждая фигура (четырехугольник) с перпендикулярными диагоналями будет ромбом.

К примеру:

Это уже не ромб, не смотря на перпендикулярность диагоналей.

Для отличия стоит запомнить, что сначала четырехугольник должен быть параллелограммом и иметь

краткое содержание других презентаций

«Задачи на признаки подобия треугольников» - Подобие треугольников. Определение высоты предмета по зеркалу. Определение высоты предмета по луже. Решение практических задач. Тень от палки. Определение высоты предмета. Измерение высоты больших объектов. Девиз урока. Решение задач по готовым чертежам. Самостоятельная работа. Гимнастика для глаз. Способ Фалеса. Индивидуальная карта. Определение высоты пирамиды. Назвать подобные треугольники.

«Свойства четырёхугольников» - Названия четырехугольников. Все углы прямые. Свойства четырехугольников. Трапеция. Квадратом называется прямоугольник, у которого все стороны равны. Элементы параллелограмма. Диагонали делят углы пополам. Четырехугольник. Диктант. Диагональ. Противоположные углы. Помогите Незнайке исправить двойку. Исторические сведения. Четырехугольники и их свойства. Диагонали. Ромб. Противоположные стороны. Стороны.

«Ромб» - Признаки. Периметр. Появление ромба. Сказка про ромб. Ромб. Ромб, в котором проведены диагонали. Что такое ромб. Формула площади. Интересные факты. Свойства ромба. Ромб в жизни.

«Решение теоремы Пифагора» - Доказательство методом разложения. Площадь квадрата. Простейшее доказательство. Доказательство Перигаля. Пифагорейцы. Диагональ. Доказательство 9 века н.э. Последователи. Высота. Диаметр. Полноценное доказательство. Мотив. Шестиугольники. Доказательство методом вычитания. Квадрат. Прямоугольник. Возможности применения теоремы. Доказательство Гутхейля. Применение теоремы. Задача о лотосе. История теоремы.

««Площадь прямоугольника» 8 класс» - Площадь квадрата равна квадрату его стороны. Площадь. Найдите площадь и периметр квадрата. Единицы измерения площадей. Многоугольник составлен из нескольких многоугольников. Найти площадь треугольника. Стороны каждого из прямоугольников. Единицы. Найдите площадь квадрата. АBCD и DСМK – квадраты. Площадь ромба равна половине произведения его диагоналей. На стороне АВ построен параллелограмм. Найдите площадь шестиугольника.

««Трапеция» 8 класс» - Трапециевидные мышцы обеих сторон спины вместе имеют форму трапеции. Задания для устной работы. Являются ли четырёхугольники трапециями. Свойства равнобедренной трапеции. Признаки равнобедренной трапеции. Виды трапеций. Площадь трапеции. Элементы трапеции. Определение. Средняя линия трапеции. Трапеция. Геометрическая фигура была названа так по внешнему сходству с маленьким столом.

с равными сторонами. Ромб с прямыми углами является квадратом .

Ромб рассматривают как вид параллелограмма, с двумя смежными равными сторонами либо с взаимно перпендикулярными диагоналями, либо с диагоналями делящими угол на 2 равные части.

Свойства ромба.

1. Ромб - это параллелограмм, поэтому противоположные стороны имеют одинаковую длину и параллельны попарно, АВ || CD, AD || ВС.

2. Угол пересечения диагоналей ромба является прямым (AC BD) и точкой пересечения делятся на две одинаковые части. То есть диагонали делят ромб на 4 треугольника - прямоугольных.

3. Диагонали ромба - это биссектрисы его углов (DCA = BCA, ABD = CBD и т. д.).

4. Сумма квадратов диагоналей равняется квадрату стороны, умноженному на четыре (вывод из тождества параллелограмма).

Признаки ромба.

Параллелограмм ABCD будет называться ромбом только в случае выполнения хотя бы одного из условий:

1. 2 его смежные стороны имеют одинаковую длину (то есть, все стороны ромба равны, AB=BC=CD=AD ).

2. Угол пересечения диагоналей прямой (AC BD ).

3. 1-на из диагоналей делит углы, которые ее содержат пополам.

Пусть мы заранее не знаем, что четырёхугольник оказывается параллелограммом, однако известно, что все его стороны равны. Значит этот четырёхугольник является ромбом.

Симметрия ромба.

Ромб симметричен относительно всех своих диагоналей, зачастую его используют в орнаментах и паркетах.

Периметр ромба.

Периметр геометрической фигуры - суммарная длина границ плоской геометрической фигуры. У периметра та же размерность величин, что и у длины.