Строение внеклеточного матрикса (ВКМ) и межклеточных контактов. Внеклеточный матрикс — состав, структура и свойства Почему так важно изучать внеклеточный матрикс

Многоклеточного организма способны синтезировать в межклеточную среду различные вещества, формирующие межклеточный матрикс, выполняющий различные функции. Матрикс:

1) разделяет группы клеток, препятствуя контакту между ними;

2) служит средой для миграции клеток;

3) может индуцировать дифференцировку клеток.

В состав внеклеточного матрикса входят три основных компонента: коллаген, протеогликаны и гликопротеины. Консистенция внеклеточного матрикса зависит от соотношения коллагена и протеогликанов (преобладание коллагена создает жесткость). Также в состав внеклеточного матрикса входит множество других компонентов: - фибрин, эластин, фибронектины, ламинины и нидогены; минералы, такие, как гидроксилапатит; жидкости - лимфа, плазма крови, содержащая свободные антигены. Внеклеточный матрикс составляет большую часть соединительных тканей, чем окружаемые им клетки, и определяет физические свойства ткани, например, кальцинированный матрикс костей и матрикс зубов; прозрачный матрикс роговицы; канатообразный матрикс сухожилий, выдерживающий огромные силы натяжения. Внеклеточный матрикс также принимает участие в регулировании поведения контактирующих с ним клеток: их развития, миграции, воспроизведения, формы, функционирования. В промежутке между эпителиальными и соединительными тканями матрикс образует базальную - тонкую, но жесткую подстилку, играющую важную роль в контролировании клеточного поведения. Вайнберг (R. A. Weinberg, 1989) высказал предположение, что окружающая нормальная ткань сдерживает рост опухолевых клеток, как бы нормализуя их и не давая проявляться неконтролируемому росту. Такими «нормализующими» факторами, согласно Вайнбергу, могут быть взаимодействие клетки с внеклеточным матриксом, межклеточные связи через щелевые контакты и выделяемые нормальными клетками цитокины. Нормальное микроокружение является тем первым барьером, который должен преодолеть трансформированный клон прежде, чем превратиться в автономно растущую опухоль.

Знания о составе, свойствах и функционировании внеклеточного матрикса очень важны для разработки новых лекарств на основе , поскольку первыми барьерами, которые необходимо им преодолеть на пути до клетки-мишени, является кровь и внеклеточный матрикс. Структурные элементы матрикса (например, коллаген) как правило имеют наноразмерную организацию и используются в подходах. Так, коллагеновые матрицы с контролируемой укладкой наноразмерных волокон могут быть использованы для культивирования клеток и создания имплантатов.

Авторы

  • Народицкий Борис Савельевич
  • Нестеренко Людмила Николаевна

Источники

  1. Матрикс // Информационно-справочный ресурс по биологии. -www.cellbiol.ru/book/kletka/matriks
  2. ВКМ (матрикс внеклеточный, ECM) // База знаний по биологии человека. -

НАУКА


Теория межклеточного матрикса

Все мы знаем, что человеческий организм состоит из клеток, но мало кто задумывается о том, что их количество составляет примерно 20% от всего организма. Остальные 80% состоят из “межклеточного матрикса” . Что такое “межклеточный матрикс”? Как его можно увидеть?

Наиболее наглядным примером межклеточного матрикса в человеческом организме является костная ткань.

Клеточная основа костной ткани это - Остеобласт. Это клетки размером 5-7 микрон, которые строят костную ткань. Количество их еще меньше по массе, чем 20%. Человеческая кость состоит из кристаллов гидроксиапатита, коллагена(тип I) и т.д. Все остальное - это межклеточный матрикс.


Теория старения человека

Даже если клетки будут на 100% здоровыми, в старости разрушение межклеточного матрикса происходит в первую очередь. Как результат, кожа становится дряблой, межклеточный матрикс разрушается, кожа “повисает”, и мы видим все признаки старения кожи невооруженным глазом. То же самое мы можем видеть и на примере костей. Люди болеют не от того, что клетки ведут себя “не так”. От остеопороза кости становятся хрупкими, в первую очередь, по причине разрушения межклеточного матрикса.

Те же проблемы возникают при облысении. В человеческом волосе нет клеток, наоборот - волосы состоят из продуктов жизнедеятельности клеток, а это - межклеточный матрикс в чистом виде. Когда разрушается межклеточный матрикс - наши волосы выпадают.

В ПОЛЬЗУ ЭТОЙ ТЕОРИИ ГОВОРЯТ СЛЕДУЮЩИЕ ФАКТЫ:

Возьмем восстановление структуры в качестве примера, или процесс регенерации.

Например, человек порезался. Восстановление клеток идет примерно с одинаковой скоростью, что у ребенка, что у пожилого человека. Разница в скорости зарастания ран исчисляется процентами, но никак не на порядок. У пожилых людей раны зарастают так же быстро, с соизмеримой скоростью, что и у молодых. Если у молодого человека неглубокий порез затягивается в течение недели, то у пожилого - 8-10 дней. Разница не является кардинальной, клетки делятся и регенерируются примерно с одинаковой скоростью на протяжении всей жизни человека, если он здоров. Это говорит о том, что клетки в порядке, и с возрастом они не теряют своей способности к регенерации, к делению.

Долгие годы для ведущих ученых мира было большой загадкой - как происходит питание клеток на самом деле? Всем давно понятно, что все питательные вещества проникают в клетки с кровью по кровеносным сосудам, по капиллярам. А дальше как? Если вы возьмете микроскоп и посмотрите на ваши клетки - вы обнаружите, что капилляры не подходят к каждой клетке вашего организма, а снабжает кислородом и питательными веществами очень большие группы клеток. Что дальше?

Межклеточный матрикс имеет очень сложное строение. В межклеточном матриксе образуются пути для транспортировки полезных веществ и вывода отработанных продуктов, причем эти пути не всегда существуют, а в зависимости от времени суток, состояния человека могут образовываться в виде “туннелей”, шоссе и т.д. Они могут образовываться на одном и том же месте. Это как аналогия полос с реверсивным движением на дорогах, когда люди едут в одном направлении утром и в противоположном вечером.

СТРУКТУРА МЕЖКЛЕТОЧНОГО МАТРИКСА ДО КОНЦА НЕ ИЗВЕСТНА.

Но совершенно четко доказано: межклеточный матрикс состоит из нескольких основных компонентов. В научном сообществе общепринято, что основной составляющей межклеточного матрикса является - гиалуроновая кислота. Поэтому она сейчас очень модна, повсеместно применяется в косметических кремах, БАДах и тд. Кроме того, в него входит коллаген или аморфный белок, хондроитин, в частности, хондроитин-сульфат, которого особенно много в суставах. И кроме этого последние исследования показывают, что наиболее важным элементом является кремнезем. Он образует первичную структуру, которая состоит из соединений кремния (SiO2). Очень напоминает строки из Библии, когда «Бог создал человека из глины», а глина как мы знаем, состоит из кремнезема, оксида кремния.

Хотя количества кремния в тканях человеческого организма не большое (всего 2%), но он играет огромную роль. Несмотря на то, что кремния очень много в природе - это основной элемент в земной коре, биодоступного кремния очень мало. Обычный кремнезем (песок, пыль, земля) очень химически инертное вещество, которое не вступает в химические реакции. Вроде бы его много, а взять его организму практически негде.

Введение

Главными тканями позвоночных являются нервная, мышечная, эпителиальная и соединительная. Клетки в тканях находятся в контакте с большим количеством внеклеточных макромолекул, объединенных в понятие внеклеточный матрикс. В некоторых тканях клетки взаимодействуют при помощи прямых контактов между собой.

Эпителиальная и соединительная ткани являются полярными, если судить по типу взаимоотношений клеток и матрикса. В соединительных тканях значительную часть объема занимает внеклеточное пространство, заполненное молекулами внеклеточного матрикса. Межклеточное вещество соединительной ткани определяет основные её свойства.

В эпителии клетки занимают большую часть объема ткани, образуя плотные слои. Их внеклеточный матрикс беден и представляет собой тонкую основу, называемую базальной мембраной. Она располагается на границе между эпителием и соединительной тканью и играет большую роль в контроле жизнедеятельности клеток. Через цитоплазму каждой эпителиальной клетки проходят тонкие внутриклеточные филаменты. Эти филаменты прямо или опосредованно соединяются с трансмембранными белками в плазматической мембране и, таким образом, образуют специфические соединения между клетками и подлежащей мембраной.

Биомедицинское значение внеклеточного матрикса

  • Продвижение клеток во время эмбриогенеза зависит от молекул матрикса
  • Острые и хронические воспаления разворачиваются в тканях при активном посредничестве молекул матрикса
  • Проблема метастазирования опухолевых клеток тесно связана с внеклеточным матриксом.
  • Наиболее распространенные заболевания - ревматоидный артрит, остеоартрит, атеросклероз - протекают с участием молекул внеклеточного матрикса.
  • Широкий спектр коллагеновых заболеваний связан с генетическими нарушениями обмена молекул матрикса
  • Дефекты лизосомных гидролаз приводят к тяжелым последствиям (мукополисахаридозы).
  • Старение и проблемы косметики тесно связаны с возможностями влияния на обмен молекул матрикса.

В большинстве органов молекулы матрикса образуются клетками, называемыми фибробластами или клетками этого семейства (хондробласты в хряще и остеобласты в костной ткани). Их называют постоянными клетками. К этому типу клеток относят также макрофаги (гистиоциты), тканевые базофилы (тучные клетки, лаброциты, гепариноциты), адипоциты (липоциты), мезенхимные клетки, перициты.

На молекулярный состав межклеточного вещества оказывают влияние и транзиторные клетки. Эти клетки мигрируют в соединительную ткань из крови в ответ на специфический стимул. К ним относятся лимфоциты, плазматические клетки, эозинофилы, нейтрофилы, базофилы и др.

В состав межклеточного матрикса входят 3 основных класса белковых молекул:

  • протеогликаны (ПГ ) - представлены белками, соединенными с полисахаридами - гликозаминогликанами (ГАГ)
  • фибриллярные белки двух функциональных типов: преимущественно структурные (семейства коллагена и эластина) и преимущественно адгезивные (семейства фибронектина или ламинина).

Все названные белки относятся к группе белково-углеводных комплексов.

Межклеточные контакты представляют собой специализированные белковые комплексы благодаря которым соседние клетки вступают во взаимный контакт и сообщаются друг с другом

Внеклеточный матрикс представляет собой плотную сеть, состоящую из белков, которая расположена между клетками и образована ими самими

Клетки экспрессируют рецепторы для белков внеклеточного матрикса

Белки внеклеточного матрикса и межклеточные контакты контролируют трехмерную организацию клеток в ткани, а также их рост, подвижность, форму и дифференцировку

Одним из наиболее важных событий в эволюции живых существ было появление многоклеточных организмов . Когда клетки выработали способ группироваться вместе, они приобрели способность образовывать сообщества, в которых различные клетки специализированы по функциям. Если, например, два одноклеточных организма «объединяют усилия», можно представить себе, что каждый из них будет специализироваться на выполнении определенных функций, необходимых для успешного роста и размножения, а остальные оставит своему партнеру.

Для образования простого многоклеточного организма или ткани более сложного организма клетки должны надежно прикрепляться друг к другу. Как показано на рисунке ниже, для клеток животных это прикрепление может достигаться тремя путями. Во-первых, клетки непосредственно прикрепляются друг к другу посредством образования межклеточных контактов, которые представляют собой специальные модификации клеточной поверхности соседних клеток. Эти контакты видны в электронном микроскопе. Во-вторых, клетки могут взаимодействовать между собой без формирования контактов, используя белки, которые не образуют такие специализированные области. В-третьих, клетки соединяются между собой непрямым образом, прикрепляясь к сети внеклеточного матрикса (ВКМ), который содержит молекулы, расположенные в межклеточной среде.

Прикрепление клеток происходит за счет образования контактов их поверхности с внеклеточным матриксом.

Однако формирование многоклеточного организма представляет собой не такую простую задачу, как скрепление нескольких клеток друг с другом. Правильное функционирование таких сообществ клеток обеспечивается их эффективным взаимодействием и разделением труда между ними. Межклеточные контакты представляют собой высокоспециализированные области, в которых клетки соединяются между собой посредством белковых комплексов, связанных с мембранами. Известно несколько различных типов межклеточных контактов, каждый из которых выполняет специфическую роль в сообщении клеток между собой.

Белки, образующие щелевые контакты , дают возможность клеткам непосредственно сообщаться друг с другом, образуя каналы, через которые происходит обмен малыми цитоплазматическими молекулами. Белки, формирующие плотные контакты, служат селективным барьером, который регулирует прохождение молекул через слой клеток и препятствует диффузии белков в плазматической мембране. Адгезивные контакты и десмосомы формируют механическую устойчивость, связывая цитоскелет контактирующих клеток, в результате чего слой клеток может функционировать как единое целое. Эти контакты могут служить передатчиками сигналов, переводя изменения клеточной поверхности в биохимические сигналы, которые распространяются по клетке.

Схемы строения межклеточных контактов эпителиальных клеток (слева),
контактных адгезивных комплексов клеток неэпителиального происхождения (справа) и комплексов клеток с внеклеточным матриксом (внизу).
Показаны также основные классы компонентов (ВКМ).

Известны также различные типы белков, которые участвуют в бесконтактном взаимодействии клеток . К таким белкам относятся интегрины, кадерины, селектины и родственные иммуноглобулинам молекулы, обеспечивающие адгезию клеток.

Все клетки, даже самые примитивные одноклеточные организмы , обладают функциями узнавания внешнего окружения и взаимодействия с ним. Даже до появления клеточных сообществ клетки должны были прикрепляться к поверхности и перемещаться по ней. Таким образом, адгезивные структуры клеточного матрикса сформировались рано в эволюции. Как показано на рисунке ниже, у многоклеточных организмов пространство между клетками заполнено плотной структурой, состоящей из белков и сахаров, которая называется внеклеточным матриксом. Внеклеточный матрикс организован в виде волокон, слоев и пленочных структур.

В некоторых тканях внеклеточный матрикс находится в виде сложных слоев, которые называются базальной ламиной и непосредственно контактируют с клетками. Белки, входящие в состав внеклеточного матрикса, бывают двух типов: структурные гликопротеины, например коллаген и эластин, и протеогликаны. Эти белки придают тканям прочность и эластичность, а также служат селективным фильтром, контролирующим поток нерастворимых компонентов между клетками. Протеогликаны проявляют гидрофильные свойства и поддерживают между клетками водное окружение. Когда клетки мигрируют, внеклеточный матрикс функционирует как опорная структура, обеспечивающая их передвижение.

Клетки секретируют компоненты внеклеточного матрикса . Они сами образуют эту наружную опорную систему, и при необходимости могут изменять ее форму за счет деградации и замены окружающих участков матрикса. В настоящий момент вопросы контроля сборки и деградации внеклеточного матрикса представляют существенный интерес, поскольку они играют важную роль в развитии многоклеточных организмов, в заживлении ран, а также в образовании злокачественных опухолей.

Контакты клеток с внеклеточным матриксом образуются за счет рецепторных белков клеточной поверхности, которые, собираясь вместе, формируют на поверхности клеток структуры типа островков (patch) и которые связывают внеклеточный матрикс, расположенный с наружной стороны плазматической мембраны с цитоскелетом со стороны цитозоля. Так же как в случае некоторых межклеточных контактов, некоторые из этих белков образуют упорядоченные комплексы, соединяющие клеточную поверхность с цитоскелетом. Эти белки обладают гораздо более широкими функциями, чем просто «клеточные присоски»; они также участвуют во многих процессах передачи сигналов и обеспечивают клеткам возможность сообщаться друг с другом.

Различные клетки вместе со своим внеклеточным матриксом формируют ткани, для которых характерна высокая степень специализации. Хрящевая, костная и другие виды соединительной ткани могут противостоять сильной механической нагрузке, в то время как другие, например ткань, формирующая легкие, не отличаются прочностью, однако являются высокоэластичными. Баланс между прочностью, эластичностью и трехмерной структурой тщательно регулируется, и компоненты каждой ткани выполняют свои функции во взаимодействии друг с другом. Таким образом, организация и состав ткани соответствуют функции, выполняемой органом; например, мышцы совершенно отличаются от кожи, и слава Богу!

Межклеточные контакты и прикрепление клеток к матриксу не ограничены только клеточной поверхностью. Во многих случаях белки должны быть заякорены в мембране достаточно сильно для того, чтобы противостоять механическим усилиям. Для этого требуется их связывание с цитоскелетом, что в основном обеспечивает клетке структурную поддержку. Наличие цитоскелета также предотвращает латеральное смещение рецепторов в плоскости мембраны, «удерживая» их на своих местах. Наряду с этим, процессы передачи сигнала регулируют сборку межклеточных контактов и поддерживают их. Цитоскелет и сигнальные механизмы играют существенную роль в клеточной адгезии.

Внеклеточный матрикс (ВКМ) - многокомпонентная субстанция, в которую погружены все клетки нашего организма. В последнее десятилетие интерес к внеклеточному матриксу значительно возрос. Это связано с установлением его роли в старении, клеточной дифференцировке, успешной терапии рака и лечении некоторых наследственных заболеваний. Мы подготовили цикл статей, в котором расскажем об организации внеклеточного матрикса, болезнях, связанных с его патологиями, роли ВКМ в старении и подходах к корректировке возрастных изменений.
В первой статье цикла мы рассказываем о компонентах и функциях внеклеточного матрикса, разбираемся, какую практическую пользу может принести его изучение, а также вкратце освещаем самые важные открытия в этой области, совершенные за последний год.

Рисунок 1. Организация ВКМ на примере кожи. Фибробласты создают ВКМ, металлопротеиназы его разрушают. Клетки эпидермиса связаны с ВКМ при помощи интегринов.

Компоненты ВКМ

Выделяют два подкласса белков, содержащих углеводы, - протеогликаны и гликопротеины. Оба подкласса входят в состав ВКМ, однако между ними есть существенные различия.

К гликопротеинам относятся такие важные структурные белки, как коллаген и эластин. За счет самого распространенного структурного белка в организме - коллагена - ВКМ приобретает прочность, а за счет эластина - гибкость и эластичность.

Интегрины улавливают химические и физические сигналы из внеклеточного матрикса и проводят их в клетку. Сигнал от интегринов передается в ядро через белки цитоскелета и сигнальные белки - так ВКМ управляет экспрессией генов и регулирует клеточную пролиферацию. При посредничестве белков цитоскелета ВКМ также управляет формой и движениями клеток.

Гиалуроновая кислота (ГК) синтезируется встроенными в мембрану белками и затем «выдавливается» через нее в межклеточное пространство. По составу ГК похожа на углеводную часть протеогликана и представляет собой полимер из остатков D-глюкуроновой кислоты и D-N-ацетилглюкозамина. ГК помогает интегринам проводить сигналы в клетку, регулирует клеточный ответ на эти сигналы и, подобно фибронектину, дает клеткам возможность закрепляться на различных поверхностях . Образно говоря, ГК выполняет задачи «интернет-провайдера» и «билета на общественный транспорт».

Почему так важно изучать внеклеточный матрикс?

Внеклеточный матрикс присутствует во всех тканях организма, поэтому сбои в его функционировании ведут к развитию болезней соединительной ткани, преждевременному старению и гибели клеток. Самый очевидный стимул для изучения ВКМ - необходимость лечения заболеваний, связанных с нарушениями структуры соединительной ткани. Таких болезней много, они могут протекать тяжело и значительно ухудшать качество жизни пациентов. Вот несколько примеров.

Мутации в генах , отвечающих за синтез структурных белков ВКМ, приводят к врожденным патологиям . Поскольку соединительная ткань - основа всех систем организма, пострадать от генетических нарушений может любой орган. Такие нарушения приводят:

  • на уровне костей - к несовершенному остеогенезу ,
  • на уровне кожи - к синдрому Элерса-Данлоса , при котором кожа становится слишком эластичной,
  • на уровне мышечной ткани - к врожденной мышечной дистрофии (CMD).

Из всех типов генетических нарушений ВКМ лучше всего изучена врожденная миодистрофия . Это заболевание развивается из-за нескольких мутаций, нарушающих работу мышц. В результате мутации в гене ITGA7 , кодирующем интегрины мышечных клеток, нарушается связь клеток с ВКМ. Это гибельно для мышечной ткани: потеря связей с ВКМ запускает апоптоз - программируемую смерть клеток.

Преждевременное разрушение ВКМ - еще одна серьезная проблема. Здоровый внеклеточный матрикс постоянно обновляется и реструктурируется. За это отвечает семейство металлопротеиназ, белков - разрушителей ВКМ.

Металлопротеиназы - ферменты, в каталитический центр которых входят ионы металлов, в основном цинка. Отсюда и название с приставкой «металло-». Помимо каталитического центра, который отвечает за разрушение ВКМ, у металлопротеиназ есть регуляторный продомен, оберегающий фермент от преждевременной активации и ложного срабатывания.

Как именно металлопротеиназы разрушают коллаген и «отцепляют» клетки от волокон внеклеточного матрикса, рассказано в статье «Кто рубит коллагеновый лес » . Сейчас же нам важно понять, что если металлопротеиназы «выходят из-под контроля», то они начинают буквально сметать всё на своем пути. Бесконтрольное разрушение ВКМ приводит к фиброзу и может вызвать рак - например, рак предстательной железы .

Еще одна патология, вызываемая нарушениями в процессах разрушения и формирования ВКМ, - болезнь Крона (хроническое воспаление кишечника) . По мере ее развития возникает фистулизация и фибростеноз кишечника (рис. 3).

Рисунок 3. При болезни Крона происходит фистулизация и фибростеноз кишечника. Из-за избыточного разрушения ВКМ в кишечной стенке образуются отверстия, а из-за избыточного синтеза коллагена сужается просвет кишечника.

Фистулизация - образование отверстий в кишечной стенке. Этот процесс связан с неконтролируемой активностью металлопротеиназ, разрушающих коллаген слизистой оболочки кишечника. Так как целостность слизистой нарушается, иммунные клетки из кровеносных сосудов проникают в кишечную стенку - так развивается воспаление, а через некоторое время появляется отверстие в стенке кишечника.

Фибростеноз - сужение кишечника. Реагируя на повреждения, фибробласты интенсивно производят коллаген. Затем активируется лизилоксидаза - внеклеточный медьсодержащий фермент, катализирующий образование сложных поперечный связей в коллагене и эластине. Лизиолоксидаза необходима для формирования зрелых коллагеновых волокон, но при ее избытке начинаются проблемы. Этот фермент создает прочную коллагеновую сеть, «запечатывающую» поврежденные кишечные стенки, но из-за избыточной жесткости коллагеновых «печатей» фиброз только усиливается. В результате возникают воспаление и (иногда) непроходимость кишечника. Фистулизация усиливает фибростеноз: неуправляемое разрушение коллагена стимулирует его столь же неуправляемый синтез.

Избыточный синтез ВКМ часто говорит о том, что у человека рак и у этого рака плохой прогноз . Кроме того, сам ВКМ может способствовать росту опухоли и распространению метастазов - это доказано для опухоли головного мозга. Особенно неприятно, что существующие методы лечения - например, лучевая терапия - способны заставить ВКМ послать клеткам сигнал, который может привести к рецидиву опухоли мозга .

Состав ВКМ головного мозга уникален: в нём очень много гиалуроновой кислоты и при этом гораздо меньше коллагена, фибронектина и других компонентов, характерных для ВКМ всех остальных тканей. Несмотря на важность ГК для нормальной работы тканей, в некоторых случаях она помогает проводить в клетки опухоли сигналы, делающие их более агрессивными. О том, как именно ГК «дразнит» раковые клетки, мы поговорим в разделе «Что нового мы узнали о внеклеточном матриксе за последний год? »

Лучевая терапия стимулирует работу мембранных белков HAS2, которые отвечают за синтез ГК. В результате они синтезируют больше гиалуроновой кислоты, а чем больше ГК, тем агрессивнее становятся опухолевые клетки. Получается, что лучевая терапия может стимулировать метастазирование опухоли. Таким образом, из-за особенностей ВКМ лучевая терапия помогает только на время: опухоль часто возвращается, становясь еще более опасной. Отчасти по этой причине некоторые виды опухолей мозга так плохо поддаются лечению.

Проблемы с ВКМ - важная причина старения

Первые признаки старения, которые сразу бросаются в глаза, - слабость, хрупкость костей, появление морщин и старческих пятен. Многие из этих проблем связаны с необратимыми изменениями во внеклеточном матриксе.

Одна из причин старения кожи - нарушение работы фибробластов (клеток, синтезирующих компоненты внеклеточного матрикса). При этом благополучие фибробластов зависит от состояния внеклеточного матрикса - получается замкнутый круг.

Рисунок 4. Микрофотография коллагеновых нитей в коже. а - «Целый» коллаген в молодой коже. б - Фрагментированный коллаген в стареющей коже. Стрелки указывают на старые, «разорванные» на кусочки нити коллагена.

Чтобы фибробласты хорошо себя чувствовали, им нужно цепляться за интактные, целые коллагеновые нити. Но со временем эти нити фрагментируются, и фибробластам становится не к чему крепиться, чтобы создать новый, целый коллаген (рис. 4) . Если бы мы научились разрывать этот замкнутый круг, то нам, вполне возможно, больше никогда не понадобились бы антивозрастные услуги косметологов и пластических хирургов.

Старение костной ткани чаще всего связано с нарушением работы остеобластов . Эти клетки создают костный ВКМ, синтезируя коллаген и особые гликопротеины, которые участвуют в первом этапе минерализации коллагена. На втором этапе коллаген превращается в прочный внеклеточный матрикс - основу кости .

С течением лет старые остеобласты погибают, а новые делятся хуже и хуже. Оставшимся в живых стареющим клеткам становится всё сложнее справляться с созданием внеклеточного матрикса. Из-за этого кости у пожилых людей становятся очень хрупкими и плохо заживают после переломов.

Если бы мы могли заставить остеобласты делиться или хотя бы выяснили, как помочь им эффективнее минерализовать соединительную ткань, у пожилых людей появилась бы возмножность быстрее восстанавливаться после переломов. Такие работы уже ведутся!

В одной из подобных работ исследователи взяли коллагеновый гель, добавили к нему два неколлагеновых белка, ответственных за минерализацию коллагена (остеокальцин и остеопонтин), и создали на их основе искусственный внеклеточный матрикс. Этот исусственный ВКМ исследователи «предложили» остеобластам, полученным из стволовых клеток костного мозга. В результате активизировалось деление остеобластов, и эти остеобласты начали производить больше компонентов внеклеточного матрикса - правда, пока только в лабораторных условиях . Чтобы искусственный ВКМ появился в кабинете травматолога и оказал содействие в восстановлении костей реальных пациентов, потребуется провести еще много исследований.

Что нового мы узнали о внеклеточном матриксе за последний год?

Над изучением ВКМ работают сотни исследовательских групп по всему миру, и каждый день появляется множество публикаций по этой теме. Давайте рассмотрим несколько свежих работ, чтобы получить представление о ключевых направлениях современных исследований. Вот что мы узнали о компонентах ВКМ в 2018 году.

Металлопротеиназы

Когда металлопротеиназы преждевременно разрушают эластин и коллаген легких, возникает соединительнотканное заболевание легких - эмфизема . Ученые давно стремились узнать, какой генетический компонент влияет на чрезмерную активность металлопротеиназ при этом заболевании.

Исследователи из немецкого Общества имени Макса Планка связали чрезмерную активность металлопротеиназ в легких со снижением активности гена Myh10 . Если этот ген «отключали» в мышиных легких, их внеклеточный матрикс формировался неправильно, разрушались межальвеолярные перегородки, с укрупнением альвеол сокращалась суммарная площадь их поверхности, а значит, должен был страдать газообмен. То есть события развивались по сценарию, типичному для человеческой эмфиземы лёгких. Кроме того, авторы работы выявили снижение экспрессии гена MYH10 в легких людей, страдающих эмфиземой.

Не исключено, что в будущем мы научимся управлять процессами, которые протекают в матриксе, используя редактирование генома и генную терапию.

Гликопротеины и металлопротеиназы

Яркий пример коварства металлопротеиназ - образование аневризм . Так, при аневризме брюшной аорты матриксные металлопротеиназы разрушают компоненты, из которых строится ВКМ этого крупного сосуда. Вскоре эта область воспаляется благодаря деятельности иммунных клеток - макрофагов. Механизмы, заставляющие металлопротеиназу разрушать аорту, долгое время оставались неизвестными.

Американским исследователям удалось выяснить, что макрофаги синтезируют нетрин-1 - белок, активирующий клетки гладких мышц сосудов . Под воздействием нетрина-1 гладкомышечные клетки активируют свободные металлопротеиназы, разрушающие соединительную ткань сосуда.

Возможно, когда-нибудь мы научимся использовать иммунные клетки, чтобы управлять разрушением внеклеточного матрикса.

Интегрины и фибронектины

Южноафриканские исследователи обнаружили, что на синтез и деградацию фибронектина влияет внутриклеточный белок теплового шока Hsp90 . Этот белок воздействует на фибронектин посредством рецептора LRP1 . Если заблокировать этот рецептор, количество фибронектина, который накапливается во внеклеточном матриксе, уменьшается. И это очень хорошо - ведь из-за избыточного накопления фибронектина развиваются многие патологии ВКМ.

Не исключено, что если мы обнаружим подобные рецепторы в клетках разных тканей и научимся на них воздействовать, то сможем предотвращать болезни, связанные с накоплением ВКМ - например, фиброз легких.

Гиалуроновая кислота

Как компонент внеклеточного матрикса гиалуроновая кислота участвует в передаче сигнала от ВКМ в клетку и даже может превратить здоровую клетку в злокачественную . Гиалуроновая кислота воздействует на клетки через рецептор CD44 .

Удалось выяснить, что интенсивность сигнала, запускающего злокачественный процесс в клетке и определяющего, насколько опасна будет получившаяся раковая клетка, зависит от концентрации гиалуроновой кислоты и от ее молекулярной массы.

Гиалуроновая кислота управляет раковыми клетками, связываясь с трансмембранным белком - интегрином CD44. Активация рецептора CD44 подавляет апоптоз, из-за чего клетка становится «бессмертной», то есть раковой. Чем больше гиалуроновой кислоты, тем больше активируется рецепторов CD44 и тем, соответственно, опаснее и агрессивнее будут раковые клетки.

Если мы научимся управлять гиалуронидазами - ферментами, которые отвечают за модификацию и деградацию гиалуроновой кислоты, - мы сможем предотвращать развитие рака и появление метастазов.

Как создавать ВКМ

Когда мы усовершенствуем технологии создания искусственного ВКМ, мы сможем производить полноценные ткани и использовать их в регенеративной медицине. Работы в этом направлении ведутся уже давно, и в прошлом году удалось сделать несколько важных шагов на пути к технологии искусственного ВКМ.

Исследователи уже научились создавать рабочие 3D-модели ВКМ (рис. 5). В отличие от традиционных 2D-моделей, которые, по сути, представляли собой клеточную культуру в чашке Петри, 3D-модели позволяют создать работающий объемный «макет» нужной нам ткани .

Рисунок 5а. Преимущества «объемной» 3D-модели соединительной ткани перед стандартной «плоской» 2D-моделью. 2D-модель . Клетки, выращенные на двумерной пластиковой подложке, ведут себя неестественно: нарастают в один слой, из-за чего нарушается межклеточное взаимодействие.

Рисунок 5б. Преимущества «объемной» 3D-модели соединительной ткани перед стандартной «плоской» 2D-моделью. 3D-модель . «Живой макет» ведет себя почти так же, как функциональная ткань: клетки растут и располагаются так, как им «нравится», поэтому у них сохраняется способность к полноценному межклеточному взаимодействию.

3D-модели можно модифицировать и дорабатывать. Уже созданы первые гидрогели - биосовместимые синтетические полимеры, способные удерживать воду. С появлением гидрогелей появилась и теоретическая возможность печатать внутренние органы.

Перед тем как первые напечатанные в лаборатории 3D-органы поступят в больницу, ученым придется решить еще множество проблем. Например, исследователям только предстоит разобраться с тем, как «подвести» к искусственным органам кровеносные сосуды. В этом тоже может помочь понимание биологии ВКМ - ведь мы уже знаем, что внеклеточный матрикс управляет в том числе и ростом сосудов .

Заключение

Внеклеточный матрикс - огромная тема, которую очень сложно охватить в одной статье. Ясно одно: если мы сумеем разобраться, как ВКМ функционирует и влияет на клетки, медицина сделает огромный шаг вперед.

. 8 ;
  • R. Pankov. (2002). Fibronectin at a glance . Journal of Cell Science . 115 , 3861-3863;
  • A. Fakhari, C. Berkland. (2013). Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment . Acta Biomaterialia . 9 , 7081-7092;
  • John F. Bateman, Raymond P. Boot-Handford, Shireen R. Lamandé. (2009). Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations . Nat Rev Genet . 10 , 173-183;
  • Caroline Bonnans, Jonathan Chou, Zena Werb. (2014). Remodelling the extracellular matrix in development and disease . Nat Rev Mol Cell Biol . 15 , 786-801;
  • T Baker, S Tickle, H Wasan, A Docherty, D Isenberg, J Waxman. (1994). Serum metalloproteinases and their inhibitors: markers for malignant potential . Br J Cancer . 70 , 506-512;
  • Elee Shimshoni, Doron Yablecovitch, Liran Baram, Iris Dotan, Irit Sagi. (2015). ECM remodelling in IBD: innocent bystander or partner in crime? The emerging role of extracellular molecular events in sustaining intestinal inflammation . Gut . 64 , 367-372;
  • M. W. Pickup, J. K. Mouw, V. M. Weaver. (2014). The extracellular matrix modulates the hallmarks of cancer . EMBO reports . 15 , 1243-1253;
  • Ki-Chun Yoo, Yongjoon Suh, Yoojeong An, Hae-June Lee, Ye Ji Jeong, et. al.. (2018). Proinvasive extracellular matrix remodeling in tumor microenvironment in response to radiation . Oncogene . 37 , 3317-3328;
  • Megan A. Cole, Taihao Quan, John J. Voorhees, Gary J. Fisher. (2018). Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging . J. Cell Commun. Signal. . 12 , 35-43;
  • Marta S. Carvalho, Atharva A. Poundarik, Joaquim M. S. Cabral, Cláudia L. da Silva, Deepak Vashishth. (2018). Biomimetic matrices for rapidly forming mineralized bone tissue based on stem cell-mediated osteogenesis . Sci Rep . 8 ;
  • Hyun-Taek Kim, Wenguang Yin, Young-June Jin, Paolo Panza, Felix Gunawan, et. al.. (2018). Myh10 deficiency leads to defective extracellular matrix remodeling and pulmonary disease . Nat Commun . 9 ;
  • Tarik Hadi, Ludovic Boytard, Michele Silvestro, Dornazsadat Alebrahim, Samson Jacob, et. al.. (2018). Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells . Nat Commun . 9 ;
  • Sara Amorim, Diana Soares da Costa, Daniela Freitas, Celso A. Reis, Rui L. Reis, et. al.. (2018). Molecular weight of surface immobilized hyaluronic acid influences CD44-mediated binding of gastric cancer cells . Sci Rep . 8 ;
  • George S. Hussey, Jenna L. Dziki, Stephen F. Badylak. (2018). Extracellular matrix-based materials for regenerative medicine . Nat Rev Mater . 3 , 159-173;
  • Min-Shao Tsai, Ming-Tsai Chiang, Dong-Lin Tsai, Chih-Wen Yang, Hsien-San Hou, et. al.. (2018). Galectin-1 Restricts Vascular Smooth Muscle Cell Motility Via Modulating Adhesion Force and Focal Adhesion Dynamics . Sci Rep . 8 ;
  • Charles H. Streuli. (2016). Integrins as architects of cell behavior . MBoC . 27 , 2885-2888;
  • Maria Almeida. (2012). Aging mechanisms in bone . BoneKEy Reports . 1 ;
  • Merry L. Lindsey. (2018). Assigning matrix metalloproteinase roles in ischaemic cardiac remodelling . Nat Rev Cardiol . 15 , 471-479.