Что такое упругий и неупругий удар. Упругое и неупругое соударение тел Упругое соударение

При абсолютно упругом ударе тела после удара полностью восстанавливают свою форму, например, футбольный мяч при ударе о стену или биллиардные шары после столкновения. При этом суммарная кинетическая энергия взаимодействующих тел сохраняется.

Иными словами, кинетическая энергия не переходит во внутреннюю энергию взаимодействующих тел, и их температура не повышается.

Рассмотрим абсолютно упругий удар шарика о массивную стену (рис. 24.1).

Пусть шарик подлетает к стене со скоростью , составляющей угол a с нормалью к стене. Выясним, с какой скоростью он отлетит от стены.

В момент удара о стену на шарик действует только сила нормальной реакции (силы трения быть не может, иначе выделялось ты тепло!). , N y = 0, а значит, в вертикальном направлении тело не может получить ускорение: а у = 0, υ 0у = υ у .

Поскольку при абсолютно упругом ударе общая кинетическая энергия сохраняется, а энергию, полученную стеной, в силу ее массивности можно считать равной нулю, то и υ = υ 0 . Но так как (по теореме Пифагора), то , а так как υ 0у = υ у , то |υ 0х | = |υ х |. Отсюда из равенства треугольников (см. рис. 24.1) следует, что угол отражения шарика b равен углу его падения a: a = b.

Итак, при абсолютно упругом ударе о массивную стену скорость тела не меняется по абсолютной величине , а угол падения равен углу отражения.

Задача 24.1. С высоты Н по гладкой наклонной плоскости длиной l = H/3 и углом наклона a = 30° соскальзывает без трения шарик и затем падает на горизонтальную плоскость, удар о которую следует считать абсолютно упругим (рис. 24.2,а ). На какую высоту h поднимется шарик после удара о плоскость?

Решение . Чтобы найти h , рассмотрим движение шарика после удара о плоскость (рис. 24.2,б ). Шарик движется как тело, брошенное под углом к горизонту, и высота подъема, как уже известно из кинематики, равна , где υ в – вертикальная составляющая начальной скорости .

Найдем с помощью ТКЭ:

.

Чтобы найти горизонтальную составляющую скорости , найдем модуль скорости также с помощью ТКЭ:

.

Из рис. 24.2,б :

υ г = υ 1 cos30° = .

Заметим, что поскольку в горизонтальном направлении после отрыва от наклонной плоскости никакие силы на шарик не действуют, величина υ г далее со временем не меняется и после удара о горизонтальную плоскость остается такой же, как после отрыва от наклонной плоскости.

Теперь найдем вертикальную составляющую скорости : , где , υ г = . Отсюда

Закон сохранения механической энергии и закон сохранения импульса при упругом ударе способствует нахождению решения механических задач с неизвестными действующими силами, то есть задания с ударным взаимодействием тел.

Применение такого вида задач используется в технике и физике элементарных частиц.

Определение 1

Удар или столкновение – это кратковременное взаимодействие тел с последующим изменением их скорости.

При столкновении действуют неизвестные кратковременные ударные силы. Закон Ньютона не разрешит ударное взаимодействие, а позволит только исключить сам процесс столкновения и получить связь между скоростями тел до и после столкновений без промежуточных значений.

Механика применяет такое определения абсолютно упругих и абсолютно неупругих ударов.

Определение 2

Абсолютно неупругий удар – это ударное взаимодействие с соединением (слипанием) движущихся тел.

Сохранение механической энергии отсутствует, так как переходит во внутреннюю, то есть нагревание.

Попадание пули в баллистический маятник – характерный пример действия энергии абсолютно неупругого удара, где
М – подвешенный ящик с песком, показанный на рисунке 1 . 21 . 1 , m – горизонтально летящая пуля с v → скоростью движения, застревающая в ящике. Определение скорости пули возможно по отклонению маятника.

Если скорость ящика с пулей обозначить как u → , тогда, используя формулу сохранения импульса, получаем:

m v = (M + m) u ; u = m M + m v .

Когда пуля застревает в песке, то механическая энергия теряется:

∆ E = m v 2 2 - (M + m) u 2 2 = M M + m · m v 2 2 .

M (M + m) обозначает долю кинетической энергии выпущенной пули и прошедшей во внутреннюю энергию системы. Тогда

∆ E E 0 = M M + m = 1 1 + m M .

Использование формулы подходит для задач с наличием баллистического маятника и другого неупругого соударения разномасных тел.

Когда m < < М ∆ E E 0 → 1 2 , тогда происходит переход кинетической энергии во внутреннюю. Когда m = M ∆ E E 0 → 0 , только половина кинетической переходит во внутреннюю. Если имеется неупругое соударение движущегося тела большей массой с неподвижным, имеющим (m > > М) , отношение принимает вид ∆ E E 0 → 0 .

Расчет движения маятника производится по закону сохранения механической энергии. Получаем

(M + m) u 2 2 = (M + m) g h ; u 2 = 2 g h .

В данном случае h является максимальной высотой подъема маятника. Отсюда следует, что

v = M + m m 2 g h .

При известной высоте h возможно определение скорости пули v .

Рисунок 1 . 21 . 1 . Баллистический маятник.

Определение 3

Абсолютный упругий удар – это столкновение с сохранением механической энергии системы тел.

Большинство случаев столкновения атомов подчинено законам абсолютного упругого центрального удара. Закон сохранения импульса и механической энергии сохраняются при таком ударе. Для примера используется столкновение при помощи центрального удара бильярдных шаров. Один из них находится в состоянии покоя, как изображено подробно на рисунке 1 . 21 . 2 .

Определение 4

Центральный удар – это соударение, когда скорости шаров направлены по линии центра.

Рисунок 1 . 21 . 2 . Абсолютно упругий центральный удар шаров.

Встречаются случаи, когда массы m 1 и m 2 не равны. Тогда, используя закон сохранения механической энергии, получаем

m 1 v 1 2 2 = m 1 v 1 2 2 + m 2 v 2 2 2 .

За v 1 принимается скорость при абсолютном упругом ударе первого шара перед столкновением, а v 2 = 0 скорость второго шара, u 1 и u 2 – скорости после столкновения.

Определение 5

Запись закона сохранения импульса для проекций скоростей на координатную ось, направленную по скорости движения первого шара до удара, принимает вид:

m 1 v 1 = m 1 u 1 + m 2 u 2 .

Полученная система из двух уравнений позволяет найти неизвестные скорости u 1 и u 2 шаров после столкновения.

u 1 = m 1 - m 2 v 1 m 1 + m 2 ; u 2 = 2 m 1 v 1 m 1 + m 2 .

Если массы равны, то есть, тогда происходит остановка первого шара (u 1 = 0) , а второй продолжает движение u 2 = v 1 . происходит обмен скоростями и импульсами.

При наличии нулевой скорости второго шара (v 2 ≠ 0) , задача могла бы свестись к предыдущей с переходим в новую систему отсчета с равномерным и прямолинейным движением и скоростью v 2 относительно «неподвижной» системы. В такой системе второй шар покоится до удара, а первый имеет скорость v 1 " = v 1 – v 2 . После определения скорости шаров v 1 и v 2 производится переход к «неподвижной» системе.

С помощью закона сохранения механической энергии и импульса, можно определить скорости шаров после столкновений только с известными скоростями до соударения.

Рисунок 1 . 21 . 3 . Модель упругие и неупругие соударения.

При столкновении атомов или молекул применяется понятие центрального или лобового удара, который редко применим на практике. Нецентральный упругий удар не направлен по одной прямой.

Частный случай нецентрального упругого удара – соударение бильярдных шаров с одинаковой массой при обездвиженном одним из них, а другим направленным не по линии центра. Данная ситуация приведена на рисунке 1 . 21 . 4 .

Рисунок 1 . 21 . 4 . Нецентральное упругое соударение шаров с одинаковой массой, где d является прицельным расстоянием.

Нецентральное ударение характеризуется тем, что разлетатание шаров происходит под углом относительно друг друга. Чтобы определить скорости v 1 и v 2 после соударения, необходимо знать нахождение положения линии центров в момент удара или предельное расстояние d , изображенное на рисунке 1 . 21 . 4 .

Определение 6

Предельным расстоянием называют расстояние между двумя линиями, которые проведены через центры шаров параллельно относительно вектора скорости v 1 → летящего шара.

При одинаковых массах шаров векторы v 1 → и v 2 → имеют перпендикулярное направление друг к другу. Это возможно показать с помощью применения законов сохранения импульса и энергии. Если m 1 = m 2 = m , тогда определение примет вид

v 1 → = u 1 → + u 2 → ; v 1 2 = u 1 2 + u 2 2 .

Первое равенство значит, что векторы v 1 → , u 1 → , u 2 → образуют треугольник, называемый диаграммой импульсов, второе – для его разрешения применяют теорему Пифагора. Угол, располагаемый между u 1 → и u 2 → , равняется 90 градусов.

Рисунок 1 . 21 . 5 . Модель соударения упругих шаров

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Важным примером применения законов сохранения импульса и энергии является задача о соударении (столкновении, ударе) тел.

Такое соударение двух (или более) тел происходит за счет взаимодействия, которое обычно длится очень короткое время. Например, при соударении бильярдных шаров взаимодействие обеспечивается силами деформации шаров при соприкосновении. А соударение электронов и ионов в электрическом разряде происходит за счет кулоновского взаимодействия, которое велико лишь в мгновения наибольшего сближения частиц. Силы взаимодействия между сталкивающимися телами из-за малого времени процесса столь велики, что внешними силами в момент столкновения можно пренебречь. Поэтому систему тел при ударе можно рассматривать как замкнутую и применять к ней закон сохранения импульса.

Если суммарная кинетическая энергия тел после соударения равна их энергии до соударения (кинетическая энергия сохраняется), то соударение называют упругим. Если в процессе соударения происходит уменьшение суммарной кинетической энергии сталкивающихся тел, то соударение неупругое. Абсолютно неупругим соударением называют столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое. Продемонстрировать абсолютно неупругий удар можно с помощью шаров из пластилина. Л, например, процесс ионизации молекулы быстрым электроном удобно рассматривать как упругое соударение с передачей от быстрого электрона электрону молекулы энергии, превышающей потенциал ионизации.

Центральным {лобовым ) соударением называют соударение, при котором тела до удара движутся вдоль прямой, проходящей через их центры масс. В противном случае соударение нецентральное {боковое).

Рассмотрим центральное упругое соударение быстрой частицы с неподвижной. Из соображений симметрии после центрального удара частицы по-прежнему могут двигаться только вдоль той же прямой, проходящей через их центры масс, так что задача сводится к одномерной. В этом случае справедливы скалярные законы сохранения импульса и кинетической энергии:

Здесь М - масса, a v - скорость быстрой (первой) частицы до соударения; v t - скорость быстрой частицы после соударения; т - масса, аг; 2 - скорость второй частицы после соударения.

Поделив почленно формулу закона сохранения энергии на формулу закона сохранения импульса так, чтобы сократились массы (для этого члены с М надо перенести в левую часть системы), получим

Подставив скорость первой частицы после соударения в формулу (3.27), получим

Важным параметром для электроники и новых технологий является доля энергии теряемая быстрой частицей в столкновении. Она находится как отношение потери энергии АЕ первой частицей к первоначальной энергии Е. Очевидно, что при упругом столкновении потеря энергии первой частицы равна энергии E v приобретенной второй частицей:

Отсюда имеем

Рассмотрим случаи наиболее важных соотношений масс (одинаковых, различных, существенно различных). При этом разными получаются направления скоростей и доля переданной энергии.

Результат математически подтверждает наблюдение, что наиболее эффективный обмен энергией при упругих соударениях возможен между частицами со сравнимой массой. В частности, при центральном соударении частиц с одинаковой массой = т) из формулы (3.31) имеем ^ = 1, что означает полную передачу энергии от налетающей частицы к неподвижной и полную остановку первой частицы в результате удара.

Если же массы соударяющихся частиц существенно различны, то в знаменателе формулы (3.31) можно пренебречь легкой массой по сравнению с тяжелой. Так, если быстрая частица более массивная (М т), то имеем

Если быстрая частица менее массивная (М т), получим

Результат в двух последних случаях показывает, что при центральном столкновении частиц с существенно различной массой доля передаваемой энергии невелика. Это справедливо независимо от того, какая частица тяжелее - быстрая или неподвижная. Частным случаем формулы (3.33) является, например, столкновение шара со стеной.

Полученные зависимости играют большую роль в электронике. Так, из формулы (3.33) следует, что ускоренный электрон при столкновении с атомами и ионами может передать им лишь порядка тысячной доли энергии и менее. Легкие электроны быстро ускоряются в электрическом поле, но медленно передают свою энергию окружающим тяжелым частицам. В результате в разрядных и других электронных приборах часто температура электронов оказывается во много раз выше температуры атомов. Так, в газоразрядных осветительных лампах температура атомов и колбы составляет сотни кельвинов, а температура электронов разряда - тысячи кельвинов. Это позволяет горячим электронам эффективно возбуждать (с последующим свечением) атомы. Здесь и в других приборах отрыв температур способствует их высокой полезной мощности и экономичности.

А, например, в соответствии с формулой (3.32) ускоренные атомы и ионы способны отдавать лишь малую часть своей энергии на ионизацию и возбуждение молекул среды, обычно происходящие за счет передачи энергии электронам атомов и ионов.

Знание относительной потери энергии позволяет оценить число упругих центральных столкновенийQ, требуемых для практически полного торможения быстрой частицы:

где т т и т л - соответственно массы тяжелой и легкой сталкивающихся частиц. Так, даже для соударений быстрых электронов с ядрами атомов водорода - протонами Q « 1000. Однако число необходимых для торможения соударений может заметно превышать даже эту большую величину. Далеко не все соударения частиц центральные. Обычно частицы при столкновении лишь слегка задевают одна другую, так что передача энергии при этом меньше, чем при центральном ударе. Такие боковые удары играют большую роль в теории столкновений. Учет их требует введения понятия сечения столкновения.

Несложно понять из формул, каким становится направление движения тел после столкновения. Опыт игры в бильярд подсказывает, что движущийся шар остановится уже при первом упругом центральном столкновении с другим точно таким же, но неподвижным шаром (рис. 3.5, а). А легкий шар при упругом соударении просто отскакивает от тяжелого и изменяет направление своего движения (и векторную характеристику движения - импульс), почти не меняя своей энергии (рис. 3.5, б). Наоборот, тяжелый шар, придавая скорость легкому, сохраняет направление своего движения (рис. 3.5, в).

Рис. 35

Рассмотрим теперь центральный абсолютно неупругий удар, когда тело массой М и со скоростью V сталкивается с неподвижным телом массы т. Закон сохранения импульса в этом случае имеет вид

где v - скорость тел после соударения. Тогда

Последняя формула позволяет получить ряд достаточно очевидных выводов. При неупругом ударе тяжелого тела по легкому в тепловые потери идет малая доля кинетической энергии. Если легкое тело бьет по тяжелому, то почти вся энергия уходит в тепло. Если массы тел сравнимы, то конечная кинетическая энергия системы сравнима с тепловыми потерями.

Если соударение является нецентральным (боковым), то в общем случае необходимо учитывать векторный характер закона сохранения импульса, который распадается на три уравнения по координатам. Впрочем, для важного случая столкновения одинаковых по массе частиц можно получить интересный результат без координатного рассмотрения. По аналогии с формулами (3.27) и (3.28) имеем


Выразив начальную скорость быстрой частицы из формулы (3.37) и подставив сс в формулу (3.38), получим

В данной ситуации скалярное произведение обращается в нуль в двух случаях. Во-первых, если конечная скорость быстрой частицы равна нулю - этот случай центрального удара мы рассматривали выше. А во-вторых, для бокового удара остается случай, когда угол между конечными скоростями частиц является прямым. Таким образом, после бокового удара налетающей частицы по неподвижной частице той же массы частицы разлетаются под прямым углом. Этот вывод существенно упрощает рассмотрение ионизации и возбуждения атомов электронным ударом.

Скорости шаров до удара,

Скорости шаров после удара,

Запишем уравнения по закону сохранения импульса и закону сохранения энергии.

Решая систему этих двух уравнений можно получить следующие формулы для скоростей шаров после удара

Рассмотрим частные случаи.

Соударение одинаковых шаров, m 1 =m 2 .

То есть, шары при соударении обмениваются скоростями.

Если один из шаров неподвижен, например v 20 =0, то после удара он будет двигаться со скоростью равной скорости первого шара (и в том же направлении), а первый шар остановится.

2). Удар шара о массивную стенку, m 2 >>m 1 .

Из формул (11) и (12) получим в этом случае:

Скорость стенки остаётся неизменной. Если стена неподвижна, (v 20 =0), то, то есть, ударившийся о стену шарик отскочит обратно практически с той же скоростью.

Таблица 1 Изучение упругого столкновения

v 10 и v 1 вычислили по формулам - где =0,1м - длина пластинок, вставленных в тележки.

Таблица 2 Измерения при различных значениях массы тележки

Таблица 3

Вывод: При абсолютно упругом ударе кинетическая энергия соударяющихся тел переходит вначале в потенциальную энергию упругой деформации. Затем тела возвращаются к первоначальной форме, отталкивая друг друга. В итоге потенциальная энергия упругой деформации снова переходит в кинетическую энергию, и тела разлетаются со скоростями, величина и направление которых определяется двумя законами - законом сохранения энергии и законом сохранения импульса.

Таблица 4 Изучение неупругого столкновения

Таблица 5

так как мы рассматриваем частный случай, когда ударяемое тело (m 2) неподвижно (v 20 =0) и масса ударяемого тела велика, (m 2 >>m 1), то

Таблица 6

Вывод: при абсолютно неупругом ударе кинетическая энергия полностью или частично превращается во внутреннюю энергию, приводя к повышению температуры тел. После удара столкнувшиеся тела либо движутся вместе с одинаковой скоростью, либо покоятся. В данном случае после удара тела движутся вместе. При абсолютно неупругом ударе выполняется только закон сохранения импульса.

Абсолютно упругий удар

Уда́р - толчок, кратковременное взаимодействие тел, при котором происходит перераспределение кинетической энергии . Часто носит разрушительный для взаимодействующих тел характер. В физике под ударом понимают такой тип взаимодействия движущихся тел, при котором временем взаимодействия можно пренебречь.

Абсолютно упругий удар

Абсолютно упругий удар - модель соударения, при которой полная кинетическая энергия системы сохраняется. В классической механике при этом пренебрегают деформациями тел. Соответственно, считается, что энергия на деформации не теряется, а взаимодействие распространяется по всему телу мгновенно. Хорошей моделью абсолютно упругого удара является столкновение бильярдных шаров или упругих мячиков.

Абсолютно упругий удар может выполняться совершенно точно при столкновениях элементарных частиц низких энергий. Это следствие принципов квантовой механики , запрещающей произвольные изменения энергии системы. Если энергии сталкивающихся частиц недостаточно для возбуждения их внутренних степеней свободы, то механическая энергия системы не меняется. Изменение механической энергии может также быть запрещено какими-то законами сохранения (момента импульса, чётности и т. п.). Надо, однако, учитывать, что при столкновении может изменяться состав системы. Простейший пример - излучение кванта света. Также может происходить распад или слияние частиц, а в определённых условиях - рождение новых частиц. В замкнутой системе при этом выполняются все законы сохранения, однако при вычислениях нужно учитывать изменение системы.

Абсолютно неупругий удар

Абсолю́тно неупру́гий удар - удар, в результате которого компоненты скоростей тел, нормальные площадке касания, становятся равными. Если удар был центральным (скорости были перпендикулярны касательной плоскости), то тела соединяются и продолжают дальнейшее своё движение как единое тело.

Как и при любом ударе, при этом выполняются закон сохранения импульса и закон сохранения момента импульса , но не выполняется закон сохранения механической энергии .

Хорошая модель абсолютно неупругого удара - сталкивающиеся пластилиновые шарики.

Реальный удар

При реальном ударе макроскопических тел происходит деформация соударяющихся тел и распространение по ним упругих волн, передающих взаимодействие от сталкивающихся границ по всему телу. Пусть сталкиваются одинаковые тела. Если c - скорость звука в теле, L - характерный размер каждого тела, то время удара будет порядка t = 2L / c . Множитель 2 соответствует распространению волны в прямом и обратном направлении. Соответственно, систему сталкивающихся тел можно считать замкнутой, если импульс внешних сил за время t мал по сравнению с импульсами тел. Кроме того, само время t должно быть достаточно мало, в противном случае становится проблематично оценить потери энергии на деформации за время удара (часть энергии всегда расходуется на внутреннее трение), а само описание сталкивающихся тел становится неполным из-за существенного вклада внутренних степеней свободы . Необходимо, чтобы все деформации при ударе были существенно меньше, чем размеры тел.

Литература

  • Сивухин Д. В. Общий курс физики. - Издание 4-е. - М .: Физматлит, 2002. - Т. I. Механика. - 792 с. - ISBN 5-9221-0225-7

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Абсолютно упругий удар" в других словарях:

    Удар, при котором коэффициент восстановления равен единице. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая механика Обобщающие… … Справочник технического переводчика

    Удар, при котором коэффициент восстановления равен единице … Политехнический терминологический толковый словарь

    У этого термина существуют и другие значения, см. Удар (значения). Удар толчок, кратковременное взаимодействие тел, при котором происходит перераспределение кинетической энергии. Часто носит разрушительный для взаимодействующих тел характер … Википедия

    Удар толчок, кратковременное взаимодействие тел, при котором происходит перераспределение кинетической энергии. Часто носит разрушительный для взаимодействующих тел характер. В физике под ударом понимают такой тип взаимодействия движущихся тел,… … Википедия

    Удар толчок, кратковременное взаимодействие тел, при котором происходит перераспределение кинетической энергии. Часто носит разрушительный для взаимодействующих тел характер. В физике под ударом понимают такой тип взаимодействия движущихся тел,… … Википедия

    В механике частный случай деформируемого тела, которое после прекращения действия причины, вызвавшей его деформацию, полностью восстанавливает исходные размеры и форму, т. е. в нём отсутствует остаточная деформация. Можно сказать, что… … Википедия

    Удар толчок, кратковременное взаимодействие тел, при котором происходит перераспределение кинетической энергии. Часто носит разрушительный для взаимодействующих тел характер. В физике под ударом понимают такой тип взаимодействия движущихся тел,… … Википедия

    Комплекс задач о взаимодействии многих тел достаточно обширный, и является одним из базовых, далеко не полностью разрешённых, разделов механики. В рамках ньютоновской концепции проблема ветвится на: комплекс задач столкновения двух и более… … Википедия

    1) Ф. и ее задачи. 2) Методы Ф. 3) Гипотезы и теории. 4) Роль механики и математики в Ф. 5) Основные гипотезы Ф.; вещество и его строение. 6) Кинетическая теория вещества. 7) Действие на расстоянии. 8) Эфир. 9) Энергия. 10) Механические картины,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона